精英家教网 > 初中数学 > 题目详情
如图所示,过点D分别作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,则△ADE,△DCF,平行四边形DEBF的面积比是(  )
分析:由DE∥BC,DF∥AB,可得△ADE∽△ACB,△DCF∽△ACB,又由AD:DC=1:2,即可得AD:AC=1:3,CD:AC=2:3,然后根据相似三角形面积的比等于相似比的平方,即可求得△ADE,△DCF与△ABC的面积比,继而求得平行四边形DEBF与△ABC的面积比,则可求得答案.
解答:解:∵DE∥BC,DF∥AB,
∴△ADE∽△ACB,△DCF∽△ACB,
∵AD:DC=1:2,
∴AD:AC=1:3,CD:AC=2:3,
∴S△ADE:S△ABC=1:9,S△DCF:S△ABC=4:9,
∴S平行四边形DEBF:S△ABC=4:9,
∴S△ADE:S△DCF:S平行四边形DEBF=1:4:4.
故选C.
点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方的定理的应用,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
14
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是 M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是(  )

A.2≤k≤9               B.2≤k≤8    C.2≤k≤5               D.5≤k≤8  

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图所示,过点D分别作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,则△ADE,△DCF,平行四边形DEBF的面积比是


  1. A.
    1:2:3
  2. B.
    1:4:9
  3. C.
    1:4:4
  4. D.
    1:4:5

查看答案和解析>>

科目:初中数学 来源:2012年四川省广安市中考数学模拟试卷(四)(解析版) 题型:选择题

如图所示,过点D分别作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,则△ADE,△DCF,平行四边形DEBF的面积比是( )

A.1:2:3
B.1:4:9
C.1:4:4
D.1:4:5

查看答案和解析>>

同步练习册答案