【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C的对应点C的坐标为(4,﹣1),画出△A1B1C1并写出顶点A,B对应点A1,B1的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2.
科目:初中数学 来源: 题型:
【题目】某公司计划投资、
两种产品,若只投资
产品,所获得利润
(万元)与投资金额
(万元)之间的关系如图所示,若只投资
产品,所获得利润
(万元)与投资金额
(万元)的函数关系式为
.
(1)求与
之间的函数关系式;
(2)若投资产品所获得利润的最大值比投资
产品所获得利润的最大值少
万元,求
的值;
(3)该公司筹集万元资金,同时投资
、
两种产品,设投资
产品的资金为
万元,所获得的总利润记作
万元,若
时,
随
的增大而减少,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△EDF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;
(3)在(2)的条件下,BP=2,CQ=9,则BC的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称或中心对称变换,若原来点 A 坐标是(a,b),则经过第 2012 次变换后所得的 A 点坐标是( )
A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知A(0,1),B(10,1),C(9,4).
(1)在网格中画出过A、B、C三点的圆和直线的图像;
(2)已知P是直线上的点,且△APB是直角三角形,那么符合条件的点P共有 个;
(3)如果直线(k>0)上有且只有二个点Q与点A、点B两点构成直角△ABQ,则k= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线C1:y=x2+6x+2的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2,直线l:y=kx+b经过M,N两点.
(1)求点M的坐标,并结合图象直接写出不等式x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点D与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若抛物线C1与x轴的交点为E、F,试问四边形EMBD是何种特殊四边形?并说明其理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;
(2)求出图中表示科普类书籍的扇形圆心角度数;
(3)本次活动师生共捐书本,请估计有多少本文学类书籍?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供资源,待货物出售后再进行结算,未出售的由厂家负责处理)。当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销。经市场调查发现:当每吨售价每降低10元时,月销售量就会增加7.5吨,综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用元.
当每吨售价为
元时,月销售量为
吨,求出
与
之间的函数解析式;
在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为
元;
若在规定每吨售价不得超过
元的情况下,当每吨售价定为多少元时,经销店的月利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com