精英家教网 > 初中数学 > 题目详情
17.(1)计算:|$\sqrt{3}$-1|+20160-(-$\frac{1}{3}$)-1
(2)解方程:$\frac{3}{4x-2}=\frac{1}{2}$.

分析 (1)本题涉及绝对值、零指数幂、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;
(2)观察可得最简公分母是2(2x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答 解:(1)|$\sqrt{3}$-1|+20160-(-$\frac{1}{3}$)-1
=$\sqrt{3}$-1+1+3
=$\sqrt{3}$+3;
(2)方程两边乘以2(2x-1)得:3=2x-1,
-2x=-1-3,
-2x=-4,
x=2,
检验:把x=2代入2(2x-1)≠0.
故x=2是原方程的根.

点评 本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、零指数幂、负整数指数幂等考点的运算.同时考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=kx+4k+1(k为实数),以点C为顶点的抛物线过点B.
(1)求抛物线的解析式;
(2)求证:不论k为何实数,直线l必过定点M并求出此定点坐标;
(3)若直线l过点A,动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.$\sqrt{3}$的倒数为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,将?ABCD沿CE折叠,使点D落在BC边上的F处,点E在AB上.
(1)求证:四边形ABFE为平行四边形;
(2)若AB=4,BC=6,求四边形ABFE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=$\frac{1}{3}$a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=$\frac{1}{3}$A1B1,…,依次规律继续下去,则正方形AnBnCnDn的面积为(  )
A.$\frac{8}{9}{a}^{2}$B.($\frac{4}{9}$)na2C.($\frac{5}{9}$)n-1a2D.($\frac{5}{9}$)na2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若x1、x2是方程x2-2x-1=0的两个根,则x1+x1x2+x2的值为(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,直线AB∥CD,∠1=50°,∠2=110°,则∠E的大小是(  )
A.40°B.50°C.60°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,⊙O的直径AB=2,点D在AB的延长线上,DC与⊙O相切于点C,连接AC.若∠A=30°,则CD长为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小刚、小华玩抽牌游戏.他们各取四张牌,小刚四张牌面的数字分别为1,2,3,5,小华四张牌面的数字分别为4,6,7,8.游戏规则如下:两人从对方的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小刚获胜,否则小华获胜.用树状图或列表的方法分别求出小刚、小华获胜概率.

查看答案和解析>>

同步练习册答案