分析 ①首先将方程做适当变形,根据解为整数确定其中一个未知数的取值,再进一步求得方程的另一个解;
②首先将方程做适当变形,根据解为整数确定其中一个未知数的取值,再进一步求得方程的另一个解;
③设25x+13y=t,于是t+7z=4.于是原方程可化为$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,用前面的方法可以求得①的解为:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整数,继而可由②得出$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整数,消去t即可得;
④原方程整理得:x2-4xy+5y2-169=0,由△=(-4y)2-4(5y2-169)=4(169-y2)可知169-y2是完全平方数即可,满足条件的y值有0,5,-5,12,-12,据此可得方程组的整数解;
⑤正整数x、y满足方程时必有x>y>0知x+y>x-y>0.又x+y与x-y有相同的奇偶性,根据原方程(x-y)(x+y)=88,右边为偶数知x+y与x-y均为偶数,根据x+y,x-y是88的因数可得$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,解之即可.
解答 解:①111x+321y=75,
x=$\frac{75-321y}{111}$=$\frac{75-99y}{111}$-2y①,
∵原方程的解为整数,
∴当y=3时,x=-8,是原方程的一组解,故y=111t+3,代入①式得x=-8-321t(t为整数),
故原方程的解为$\left\{\begin{array}{l}{x=-8-321t}\\{y=111t+3}\end{array}\right.$(t为整数).
②37x+41y=1,
x=$\frac{1-41y}{37}$=$\frac{1-4y}{37}$-y①,
∵原方程的解为整数,
∴当y=-9时,x=10,是原方程的一组解,故y=37t-9,代入①式得x=10-41t(t为整数),
故原方程的解为$\left\{\begin{array}{l}{x=10-41t}\\{y=37t-9}\end{array}\right.$(t为整数).
③25x+13y+7z=4,
设25x+13y=t,于是t+7z=4.
于是原方程可化为$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,
用前面的方法可以求得①的解为:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整数;
②的解为$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整数.
消去t,得$\left\{\begin{array}{l}{x=6000-8u+15v}\\{y=-2000+3u-5v}\\{z=1000+3v}\end{array}\right.$,u,v是整数.
即当u、v取不同整数的时候,会得到相应的x、y、z的整数值.
④原方程整理得:x2-4xy+5y2-169=0,
∵△=(-4y)2-4(5y2-169)=4(169-y2),
∴169-y2是完全平方数即可,满足条件的y值有0,5,-5,12,-12,
由此适合原方程的全部整数解为:$\left\{\begin{array}{l}{x=22}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-22}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=0}\end{array}\right.$;
⑤∵正整数x、y满足方程时,必有x>y>0.
∴x+y>x-y>0.
又∵x+y与x-y有相同的奇偶性,
∵原方程(x-y)(x+y)=88,右边为偶数,
∴从而x+y与x-y均为偶数,
又∵x+y,x-y是88的因数,
∴有$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,
由此可解得$\left\{\begin{array}{l}{x=43}\\{y=41}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=9}\end{array}\right.$或$\left\{\begin{array}{l}{x=-43}\\{y=-41}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=23}\\{y=-21}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=21}\\{y=-23}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-17}\end{array}\right.$.
点评 本题主要考查了一次不定方程(组),本题是求不定方程的整数解,先将方程做适当变形,然后列举出其中一个未知数的适合条件的所有整数值,再求出另一个未知数的值.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1cm2 | B. | 2cm2 | C. | $\sqrt{2}$cm2 | D. | $\sqrt{3}$cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=-2(x+1)2+3 | B. | y=-2(x-1)2+3 | C. | y=-2(x+1)2-3 | D. | y=-2(x-1)2-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com