精英家教网 > 初中数学 > 题目详情
16.求下列不定方程的整数解:
①111x+321y=75;
②37x+41y=1;
③25x+13y+7z=4;
④x2-4xy+5y2=169;
⑤x2-y2=88.

分析 ①首先将方程做适当变形,根据解为整数确定其中一个未知数的取值,再进一步求得方程的另一个解;
②首先将方程做适当变形,根据解为整数确定其中一个未知数的取值,再进一步求得方程的另一个解;
③设25x+13y=t,于是t+7z=4.于是原方程可化为$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,用前面的方法可以求得①的解为:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整数,继而可由②得出$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整数,消去t即可得;
④原方程整理得:x2-4xy+5y2-169=0,由△=(-4y)2-4(5y2-169)=4(169-y2)可知169-y2是完全平方数即可,满足条件的y值有0,5,-5,12,-12,据此可得方程组的整数解;
⑤正整数x、y满足方程时必有x>y>0知x+y>x-y>0.又x+y与x-y有相同的奇偶性,根据原方程(x-y)(x+y)=88,右边为偶数知x+y与x-y均为偶数,根据x+y,x-y是88的因数可得$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,解之即可.

解答 解:①111x+321y=75,
x=$\frac{75-321y}{111}$=$\frac{75-99y}{111}$-2y①,
∵原方程的解为整数,
∴当y=3时,x=-8,是原方程的一组解,故y=111t+3,代入①式得x=-8-321t(t为整数),
故原方程的解为$\left\{\begin{array}{l}{x=-8-321t}\\{y=111t+3}\end{array}\right.$(t为整数).

②37x+41y=1,
x=$\frac{1-41y}{37}$=$\frac{1-4y}{37}$-y①,
∵原方程的解为整数,
∴当y=-9时,x=10,是原方程的一组解,故y=37t-9,代入①式得x=10-41t(t为整数),
故原方程的解为$\left\{\begin{array}{l}{x=10-41t}\\{y=37t-9}\end{array}\right.$(t为整数).

③25x+13y+7z=4,
设25x+13y=t,于是t+7z=4.
于是原方程可化为$\left\{\begin{array}{l}{25x+8y=t①}\\{t+7z=4②}\end{array}\right.$,
用前面的方法可以求得①的解为:$\left\{\begin{array}{l}{x=3t-8u}\\{y=-t+3u}\end{array}\right.$,u是整数;
②的解为$\left\{\begin{array}{l}{t=2000+5v}\\{z=1000+3v}\end{array}\right.$,v是整数.
消去t,得$\left\{\begin{array}{l}{x=6000-8u+15v}\\{y=-2000+3u-5v}\\{z=1000+3v}\end{array}\right.$,u,v是整数.
即当u、v取不同整数的时候,会得到相应的x、y、z的整数值.

④原方程整理得:x2-4xy+5y2-169=0,
∵△=(-4y)2-4(5y2-169)=4(169-y2),
∴169-y2是完全平方数即可,满足条件的y值有0,5,-5,12,-12,
由此适合原方程的全部整数解为:$\left\{\begin{array}{l}{x=22}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=-22}\\{y=-5}\end{array}\right.$或$\left\{\begin{array}{l}{x=29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-29}\\{y=12}\end{array}\right.$或$\left\{\begin{array}{l}{x=-19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=19}\\{y=-12}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=0}\end{array}\right.$;

⑤∵正整数x、y满足方程时,必有x>y>0.
∴x+y>x-y>0.
又∵x+y与x-y有相同的奇偶性,
∵原方程(x-y)(x+y)=88,右边为偶数,
∴从而x+y与x-y均为偶数,
又∵x+y,x-y是88的因数,
∴有$\left\{\begin{array}{l}{x-y=2}\\{x+y=44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=4}\\{x+y=22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-2}\\{x+y=-44}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-4}\\{x+y=-22}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=44}\\{x+y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=22}\\{x+y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-44}\\{x+y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=-22}\\{x+y=-4}\end{array}\right.$,
由此可解得$\left\{\begin{array}{l}{x=43}\\{y=41}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=9}\end{array}\right.$或$\left\{\begin{array}{l}{x=-43}\\{y=-41}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=23}\\{y=-21}\end{array}\right.$或$\left\{\begin{array}{l}{x=13}\\{y=-9}\end{array}\right.$或$\left\{\begin{array}{l}{x=21}\\{y=-23}\end{array}\right.$或$\left\{\begin{array}{l}{x=-13}\\{y=-17}\end{array}\right.$.

点评 本题主要考查了一次不定方程(组),本题是求不定方程的整数解,先将方程做适当变形,然后列举出其中一个未知数的适合条件的所有整数值,再求出另一个未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.单项式$\frac{4π{a}^{2}b}{3}$的系数是$\frac{4π}{3}$,次数是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若$\frac{a-b}{a}$=$\frac{5}{8}$,则$\frac{b}{a}$=$\frac{3}{8}$,$\frac{a+b}{b}$=$\frac{11}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:(-2)2÷$\frac{-{1}^{4}}{3}$×($\frac{2}{3}$+$\frac{1}{2}$-$\frac{3}{4}$)-|2-1$\frac{5}{6}$|÷(-$\frac{1}{3}$)×3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)-8-3×(-1)7-(-1)8
(2)3+50÷22×(-$\frac{1}{5}$)-1;
(3)-32+(-2)3×(-4)÷|$\frac{1}{4}$|;
(4)(-2)2+(-9)÷(-1$\frac{5}{4}$);
(5)-0.52+4-|-22-4|-(-1$\frac{1}{2}$)3×$\frac{16}{27}$;
(6)(-1.25)×$\frac{2}{5}$×8-9÷(1$\frac{1}{2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形.若AB=3cm,则阴影部分的面积为(  )
A.1cm2B.2cm2C.$\sqrt{2}$cm2D.$\sqrt{3}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.将抛物线y=-2x2向右平移1个单位,再向上平移3个单位,得到的抛物线是(  )
A.y=-2(x+1)2+3B.y=-2(x-1)2+3C.y=-2(x+1)2-3D.y=-2(x-1)2-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程
(1)-2x=4                           
(2)x-10=7
(3)x+13=5x+37                    
(4)3x-x=-$\frac{1}{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.对于正整数a,我们规定:若a为奇数,则f(a)=3a+1;若a为偶数,则f(a)=$\frac{a}{2}$.例如f(15)=3×15+1=46,f(10)=$\frac{10}{2}$=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,依此规律进行下去,得到一列数a1,a2,a3,a4,…,an,…(n为正整数),则a3=2,a1+a2+a3+…+a2016=  4711.

查看答案和解析>>

同步练习册答案