试题分析:(1)连接OE,根据矩形的性质可得AD∥BC,∠C=∠A=90°,即可得到∠3=∠DBC,∠ABE+∠1=90°,再结合OD=OE,∠ABE=∠DBC可得∠2=∠3=∠ABE,从而可以证得结论;
(2)由∠ABE =∠DBC可得
,即可求得DB的长,再根据勾股定理求得DE的长,
连接EF,根据圆周角定理可得∠DEF=∠A=90°,再证得
∽
,根据相似三角形的性质即可求得结果.
(1)连接OE
∵四边形ABCD是矩形
∴AD∥BC,∠C=∠A=90°
∴∠3=∠DBC,∠ABE+∠1=90°
∵OD=OE,∠ABE=∠DBC
∴∠2=∠3=∠ABE
∴∠2+∠1=90°
∴∠BEO=90°
∵点E在⊙O上
∴BE与⊙O相切;
(2)∵∠ABE =∠DBC
∴
∵DC=2,∠C=90°
∴DB=6
∵∠A=90°
∴BE=3AE
∵AB=CD=2
利用勾股定理,得
,
∴
连接EF
∵DF是⊙O的直径,
∴∠DEF=∠A=90°
∴AB∥EF
∴
∽
∴
∴
∴
∴⊙O的半径为
.
点评:解答本题的关键是熟练掌握切线垂直于经过切点的半径;相似三角形的对应边成比例,注意对应字母在对应位置上.