精英家教网 > 初中数学 > 题目详情
2.化简:3$\sqrt{\frac{1}{3}}$-($\frac{1}{2}$$\sqrt{12}$-1)

分析 先把各根式化为最简二次根式,再去括号,合并同类项即可.

解答 解:原式=$\sqrt{3}$-($\sqrt{3}$-1)
=$\sqrt{3}$-$\sqrt{3}$+1
=1.

点评 本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN;
(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算${({-2})^3}+{({\sqrt{3}-1})^0}$的结果是-7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:(2a23•a2÷2a.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系AF=$\sqrt{2}$AE;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.
(1)求证:BG=AE;
(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)
①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求$\frac{GM}{MD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算正确的是(  )
A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3D.(-bc)4÷(-bc)2=b2c2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)先化简,再求值:(x-1)(x-3)-4x(x+1)+3(x+1)(x-1),其中x=$\frac{1}{16}$;
(2)已知3×9m×27m=317+m,求:(-m23÷(m3-m2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.补全下列各题解题过程.
(1)如图1,∵AD∥BC
∴∠FAD=∠ABC.(两直线平行,同位角相等)
∵∠1=∠2
∴AB∥DC(内错角相等,两直线平行)
(2)如图2,已知∠B+∠BCD=180°,∠B=∠D.
求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD(同旁内角互补,两直线平行)
∴∠B=∠DCE(两直线平行,同位角相等).
又∵∠B=∠D(已知)
∴∠DCE=∠D(等量代换).
∴AD∥BE(内错角相等,两直线平行)
∴∠E=∠DFE(两直线平行,内错角相等)

查看答案和解析>>

同步练习册答案