精英家教网 > 初中数学 > 题目详情
如图,直角坐标系内的矩形ABCD中顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P,与对角线AC相切于点F,过P、F作直线l,交BC边上于点E .当点P运动到点P1位置时,直线l恰好经过点B,此时直线的解析式是y=2x+1 .
(1)求BC、AP1的长;
(2)设AP=m,梯形PECD的面积为S,求S关于m的函数关系式,并写出自变量m的取值范围;
(3)以点E为圆心作⊙E,与x轴相切 .试探究并猜想⊙P和⊙E有哪几种不同的位置关系,并求出AP相应的取值范围.
解:(1)由y=2x+1可知, 当x=0时 ,y=1
              ∴ 点B(0,1) ∵点A(0,3)
               ∴AB=2 又 BC=2AB ∴ BC=4
               ∵点P1在直线y=2x+1和AD边上,又AD // x轴 , ∴可设
              则 3=2a+1 即   ∴AP1=1 ;
(2)∵AP=m   AD=4    AP1=1
         ∴PD = 4-m    P1P = m-1
         又P1P//BE,P1B//PE,    ∴P1PEB是平行四边形.
       ∴BE=P1P      ∴EC = 4-(m-1) = 5-m      
       ∴S=[(4-m)+(5-m)]×2 = 9-2m      1≤m<4;
(3)当⊙E与x轴及⊙P外切时,EF=1, ∵ △CFE∽△CBA 
         ∴   ∴即EC=
         ∴BE=4- 即m-1=4-     ∴m=5-
        ∴当m=5-时, ⊙P与⊙E外切;
            当1≤m<5-时, ⊙P与⊙E外离;
            当5-<m<4时, ⊙P与⊙E相交 。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1.
(1)求BC、AP1的长;
(2)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(3)以点E为圆心作⊙E与x轴相切.
①探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围;
②当直线L把矩形ABCD分成两部分的面积之比值为3:5时,则⊙P和⊙E的位置关系如何并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角坐标系内的梯形AOBC,AC∥OB,AC、OB的长分别是关于x的方程x2-6mx+m2+4=0的两根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的长;
(2)当BC⊥OC时,求OC的长及OC所在直线的解析式;
(3)在第(2)问的条件下,线段OC上是否存在一点M,过M点作x轴的平行线,交y轴于F,交BC于D,过D点作y轴的平行线,交x轴于点E,使S矩形FOED=
12
S梯形AOBC?若存在,请直接写出M点的坐标;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角坐标系内的梯形AOBC(O为原点)中AC∥OB,AO⊥OB,AC=1,OA=2,OB=5.
(1)求经过O,C,B三点的抛物线的解析式;
(2)延长AC交抛物线于点D,求线段CD的长;
(3)在(2)的条件下,动点P、Q分别从O、D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O向B运动,点Q沿DC由D由C运动(其中一个点运动到终点后,另一个点运动也随之停止),过点Q作QM⊥CD交BC于点M,连接PM.设动点运动的时间为t秒,请你探索:当时间t为何值时,△PMB中有一个角是直角.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2003年黑龙江省中考数学试卷(解析版) 题型:解答题

(2003•黑龙江)已知:如图,直角坐标系内的梯形AOBC,AC∥OB,AC、OB的长分别是关于x的方程x2-6mx+m2+4=0的两根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的长;
(2)当BC⊥OC时,求OC的长及OC所在直线的解析式;
(3)在第(2)问的条件下,线段OC上是否存在一点M,过M点作x轴的平行线,交y轴于F,交BC于D,过D点作y轴的平行线,交x轴于点E,使S矩形FOED=S梯形AOBC?若存在,请直接写出M点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案