精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了一次项系数的符号,误求得两根为-1和4,则
2b+3c
a
的值为(  )
分析:先利用两根分别表示出错误的方程为:甲,设k(x-2)(x-4)=0得kx2-6kx+8k=0;乙,设p(x+1)(x-4)=0得px2-3px-4p=0,无论怎么错误,甲和乙的方程里面常量相同,就是8k=-4p,即p=-2k,把第一个方程中的一次项和常数项,第二个方程中的二次项代入所求代数式中化简后可解.
解答:解:对于甲:设k(x-2)(x-4)=0,
得kx2-6kx+8k=0,
对于乙:设p(x+1)(x-4)=0,
得px2-3px-4p=0,
从这两个方程可看出:无论怎么错误,甲和乙的方程里面常量相等,
所以8k=-4p,即p=-2k,
2b+3c
a
=
-12k+24k
-2k
=-6.
故选D.
点评:此题考查了一元二次方程的特点,以及方程之间的关系,难度较大.需要利用方程的两根来表示出两个错误的方程,并通过比较后,得出初步判断为无论怎么错误,甲和乙的方程里面常量相等这个关键的等量关系,然后通过等量代换求解,在代值时,二次项系数要以第二个方程为准,一次项系数要以第一个方程为准.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案