精英家教网 > 初中数学 > 题目详情

如图AF是⊙O的直径,以OA为直径的⊙C与⊙O的弦AB相交于点D,DE⊥OB,垂足为E,求证:
(1)D是AB的中点;
(2)DE是⊙C的切线;
(3)BE•BF=2AD•ED.

证明:(1)连接OD,
∵OA是⊙C的直径,
∴∠ADO=90°,
∵AB是⊙O的弦,OD是弦心距,
∴AD=BD,即D是AB的中心;

(2)连接CD,
∵C、D分别为AO,AB的中点,
∴CD∥OB,
∵DE⊥OB,
∴DE⊥CD,
∴DE为⊙C的切线;

(3)连接BF,
∵AF是⊙O的直径,
∴∠ABF=90°,
∵OA=OB,
∴∠OAB=∠OBA,
又∵∠BED=90°,
∴△ABF∽△BED,
=
∴BE•BF=AB•ED,
∵AB=2AD,
∴BE•BF=2AD•ED.
分析:(1)连接OD,由OA为直径,利用直径所对的圆周角为直角得到∠ADO为直角,由AB为圆O的弦,OD垂直于AB,利用垂径定理得到AD=BD,即可得到D为AB的中点;
(2)连接CD,由D为AB的中点,C为OA的中点,得到CD为三角形AOB的中位线,利用中位线定理得到CD与OB平行,由DE垂直于OB,利用与平行线中的一条垂直,与另一条也垂直得到DE与DC垂直,即可得到DE为圆C的切线;
(3)由AF为圆O的直径,利用直径所对的圆周角为直角得到∠ABF为直角,再由OA=OB,利用等比对等角得到一对角相等,再由一对角为直角,得到三角形BDE与三角形ABF相似,由相似得比例,将AB=2AD代入变形即可得证.
点评:此题考查了切线的判定,垂径定理,圆周角定理,相似三角形的判定与性质,三角形的中位线定理,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,PA切⊙O于点C,∠BPA的角平分线交AC于点E,交AB于精英家教网点F,交⊙O于点D,∠B=60°,线段BF、AF是一元二次方程x2-kx+2
3
=0的两根(k为常数).
(1)求证:PB•AE=PA•BF;
(2)求证:⊙O的直径是常数k;
(3)求:tan∠DPB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•辽宁)如图AF是⊙O的直径,以OA为直径的⊙C与⊙O的弦AB相交于点D,DE⊥OB,垂足为E,求证:
(1)D是AB的中点;
(2)DE是⊙C的切线;
(3)BE•BF=2AD•ED.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期中考试数学试卷(解析版) 题型:选择题

如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,F是CE的中点,AB=10,CD=8.如果以O为圆心、AF长为半径作小⊙O,那么点E与小⊙O的位置关系为(     ) 

A.点E在小⊙O外      B.点E在小⊙O上       C.点E在小⊙O内      D.不能确定

 

查看答案和解析>>

科目:初中数学 来源:1997年辽宁省中考数学试卷(解析版) 题型:解答题

如图AF是⊙O的直径,以OA为直径的⊙C与⊙O的弦AB相交于点D,DE⊥OB,垂足为E,求证:
(1)D是AB的中点;
(2)DE是⊙C的切线;
(3)BE•BF=2AD•ED.

查看答案和解析>>

同步练习册答案