精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD是菱形,BCx轴,点B的坐标是(1),坐标原点OAB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_________

【答案】

【解析】

若⊙P在运动过程中只与菱形ABCD的一边相切,则需要对此过程分四种情况讨论,根据已知条件计算出m的取值范围即可.

解:由B点坐标(1),及原点OAB的中点可知AB=2,直线AB与x轴的夹角为60°,

又∵四边形ABCD是菱形,

∴AD=AB=BC=CD=2,

设DC与x轴相交于点H,则OH=4,

1)当⊙PDC边相切于点E时,连接PE,如图所示,

由题意可知PE=PEDC,∠PHE=60°,

PH=2

∴此时点P坐标为(-6,0),所以此时

2)当⊙P只与AD边相切时,如下图,

PD=,∴PH=1

∴此时

当⊙P继续向右运动,同时与ADBC相切时,PH=1,所以此时

∴当时,⊙P只与AD相切;

3)当⊙P只与BC边相切时,如下图,

PAD相切于点A时,OP=1,此时m=-1

PAD相切于点B时,OP=1,此时m=1

∴当,⊙P只与BC边相切时;

4)当⊙P只与BC边相切时,如下图,

由题意可得OP=2

∴此时

综上所述,点P的横坐标m 的取值范围

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.

(1)将△ABC向下平移5个单位再向右平移1个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出△A1B1C1关于y轴对称的△A2B2C2

(3)P(ab)是△ABC的边AC上一点,请直接写出经过两次变换后在△A2B2C2中对应的点P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c的图象与x轴交于A(40)和点B两点,与y轴交于点C,抛物线的对称轴是x=1x轴交于点D

1)求拋物线的函数表达式;

2)若点P(mn)为抛物线上一点,且﹣4m<﹣1,过点PPEx轴,交抛物线的对称轴x=1于点E,作PFx轴于点F,得到矩形PEDF,求矩形PEDF周长的最大值;

3)点Q为抛物线对称轴x=1上一点,是否存在点Q,使以点QBC为顶点的三角形是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《函数的图象与性质》拓展学习展示:

(问题)如图1,在平面直角坐标系中,抛物线G1x轴相交于A-10),B30)两点,与y轴交于点C,则a= b=

(操作)将图1中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2G2y轴左侧的部分与G1y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G对应的函数解析式.

(探究)在图2中,过点C作直线l平行于x轴,与图象G交于DE两点.求图象G在直线l上方的部分对应的函数yx的增大而增大时x的取值范围.

(应用)P是抛物线G2对称轴上一个动点,当PDE是直角三角形时,直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,ABACADBC边上的中线,点EAD上一点,过点BBFEC,交AD的延长线于点F,连接BECF

1)求证:BDF≌△CDE

2)当EDBC满足什么数量关系时,四边形BECF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,边形为菱形,点为对角线上的一个动点,连接并延长交于点,连接.

(1)如图1,求证:

(2)如图2,若,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别为轴、轴正半轴上的点,以为边,在一象限内作矩形,且.将矩形翻折,使点与原点重合,折痕为,点的对应点落在第四象限,过点的反比例函数,其图象恰好过的中点,则点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着智能手机的普及率越来越高以及移动支付的快捷高效性,中国移动支付在世界处于领先水平.为了解人们平时最喜欢用哪种移动支付方式,因此在某步行街对行人进行随机抽样调查,以下是根据调查结果分别整理的不完整的统计表和统计图.

移动支付方式

支付宝

微信

其他

人数/

   

200

75

请你根据上述统计表和统计图提供的信息.完成下列问题:

1)在此次调查中,使用支付宝支付的人数;

2)求表示微信支付的扇形所对的圆心角度数;

3)某天该步行街人流量为10万人,其中30%的人购物并选择移动支付,请你依据此次调查获得的信息估计一下当天使用微信支付的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】都是实数,且.我们规定:满足不等式的实数的所有值的全体叫做闭区间、表示为.对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”.

(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;

(2)若一次函数是闭区间上的“闭函数”,求此一次函数的解析式;

(3)若实数满足.且,当二次函数是闭区间上的“闭函数”时,求的值.

查看答案和解析>>

同步练习册答案