精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=BDE.

(1)求证:AC是⊙O的切线;

(2)连接OCBE于点F,若,求的值.

【答案】(1)证明见解析;(2)

【解析】

试题(1)连接OE,证得OEAC即可确定AC是切线;
(2)根据OEBC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.

试题解析:解:(1)连接OE

OB=OE,∴∠OBE=∠OEB

∵∠ACB=90°,∴∠CBE+∠BEC=90°.

BDO的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OEBC,∴∠OEA=∠ACB=90°,即OEAC,∴ACO的切线

(2)∵OEBC,∴AOEABC,∴OEBC=AEAC

CEAE=2:3,∴AEAC=3:5,∴OEBC=3:5.

OEBC,∴OEFCBF,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°B=60°BC=2A′B′C′可以由ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且AB′A′在同一条直线上,则AA′的长为(  )

A. 4 B. 6 C. 3 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (2013年四川南充3分) 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:AD=BE=5cm当0<t≤5时直线NH的解析式为ABE与QBP相似,则t=秒。其中正确的结论个数为【 】

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料,并解决问题.

1)已知在ABC中,∠A60°,图1-图3ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.

如图1,∠O     ; 如图2,∠O     ; 如图3,∠O     ;如图4,∠ABC,∠ACB的三等分线交于点O1O2,连接O1O2,则∠BO2O1    

2)如图5,点OABC两条内角平分线的交点,求证:∠O90°A.

3)如图6ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1O2,若∠1115°,∠2135°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,演绎推理的过程称为证明,证明的出发点和依据是基本事实.证明三角形全等的基本事实有:两边及其夹角分别相等的两个三角形全等,两角及其夹边分别相等的两个三角形全等,三边分别相等的两个三角形全等.

1)请选择利用以上基本事实和三角形内角和定理,结合下列图形,证明:两角分别相等且其中一组等角的对边相等的两个三角形全等.

2)把三角形的三条边和三个角统称为三角形的六个元素.如果两个三角形有四对对应元素相等,这两个三角形一定全等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据所给信息解答下列问题:

1)请补全条形统计图并在图中标明相应数据;

2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?

3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O 的直径,CD⊙O的一条弦,且CD⊥AB于点E

1)求证:∠BCO=∠D

2)若CD=AE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字,另一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字(如图).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.

⑴.用树状图或列表法求出小颖参加比赛的概率;

⑵.你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏的规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=2.

(1)若CE=1,求BC的长;

(2)求证:AM=DF+ME.

查看答案和解析>>

同步练习册答案