精英家教网 > 初中数学 > 题目详情
7.如图1,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则m的值是(  )
A.6B.8C.11D.16

分析 首先结合题意可得当点P运动到点C,D之间时,△ABP的面积不变,则可得当BC=5,CD=6,继而求得答案.

解答 解:动点P从点B出发,沿BC、CD、DA运动至点A停止,
∵当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,
∴x=5时,y开始不变,说明BC=5,
∴△ABC的面积为:y=$\frac{1}{2}$×AB×5=15.
∴AB=6,
∵四边形ABCD为矩形,
∴CD=AB=6,
∴M=5+6=11.
故选:C.

点评 本题考查了动点问题的函数图象.注意解决本题应首先看清横轴和纵轴表示的量,找到面积不变的开始与结束,得到BC,CD的具体值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,正方形ABCD中,点E,F分别在边CD,BC上,且∠EAF=45°,BD分别交AE,AF于点M,N,以点A为圆心,AB长为半径画弧BD.下列结论:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④$\widehat{BD}$与EF相切;⑤EF∥MN.其中正确结论的个数是(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在平面直角坐标系中,过点A(-2$\sqrt{3}$,O)的直线AB交7轴的正半轴于点B,∠ABO=60°.

(1)求直线AB的解析式;(直接写出结果)
(2)如图2,点C是x轴上一动点,以C为圆心,$\sqrt{3}$为半径作⊙C,当⊙C与AB相切时,设切点为D,求圆心C的坐标;
(3)在(2)的条件下,点E在x轴上,△ODE是以OD为底边的等腰三角形,求过点O、E、D三点的抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,△ABC内接于半径为5的圆心O,圆心O到弦BC的距离等于3,则tanA等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-1与x轴交于A,B两点(点A在点B左侧)
(1)求抛物线的顶点坐标(用含m的代数式表示);
(2)求线段AB的长;
(3)抛物线与y轴交于点C(点C不与原点O重合),若△OAC的面积始终小于△ABC的面积,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E 作 AB的平行线交BC于点F,则下列说法不正确的是(  )
A.$\frac{AD}{AB}=\frac{AE}{AC}$B.$\frac{DE}{FC}=\frac{AD}{BD}$C.$\frac{AD}{BF}=\frac{AE}{FC}$D.$\frac{BF}{BC}=\frac{AD}{AB}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.某班学校毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了2550份留言,如果全班有x名学生,根据题意,列出方程(  )
A.$\frac{x(x-1)}{2}$=2550B.$\frac{x(x+1)}{2}$=2550C.x(x-1)=2550D.x(x+1)=2550

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为$\frac{5}{2}$,sinA=$\frac{3}{5}$,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:-12016-4cos30°+($\sqrt{3}$-2)0-(-$\frac{1}{3}$)-1-|$\sqrt{12}$-4|

查看答案和解析>>

同步练习册答案