A. | B. | C. | D. |
分析 可先根据一次函数的图象判断a、c的符号,再判断二次函数图象与实际是否相符,判断正误.
解答 解:A、由一次函数y=ax+c的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;
B、由一次函数y=ax+c的图象可得:a>0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向上,交于y轴的正半轴,错误;
C、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.
D、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,与一次函数的图象交于同一点,正确;
故选D.
点评 本题考查了二次函数的图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | $\frac{10}{3}$ | D. | $\frac{13}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com