精英家教网 > 初中数学 > 题目详情
如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
(1)抛物线的解析式为:y=﹣x2+x+2
(2)存在,P1,4),P2),P3,﹣
(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=

试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=SBCD+SCEF+SBEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).
解得:
∴抛物线的解析式为:y=﹣x2+x+2;
(2)∵y=﹣x2+x+2,

∴y=﹣(x﹣2+
∴抛物线的对称轴是x=
∴OD=
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=2,
∴DP1=4.
∴P1,4),P2),P3,﹣);
(3)当y=0时,0=﹣x2+x+2
∴x1=﹣1,x2=4,
∴B(4,0).
设直线BC的解析式为y=kx+b,由图象,得

解得:
∴直线BC的解析式为:y=﹣x+2.
如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),
∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
=﹣a2+4a+(0≤x≤4).
=﹣(a﹣2)2+
∴a=2时,S四边形CDBF的面积最大=
∴E(2,1).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t=    时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点
A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个开口向下,对称轴为直线的抛物线的解析式,y=                 .?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-x-
3
2

(1)求该抛物线的对称轴和顶点坐标;
(2)求抛物线与x轴交点的坐标;
(3)画出抛物线的示意图;
(4)根据图象回答:当x在什么范围时,y随x的增大而增大?当x在什么范围时,y随x的增大而减小?
(5)根据图象回答:当x为何值时,y>0;当x为何值时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是(  )

查看答案和解析>>

同步练习册答案