精英家教网 > 初中数学 > 题目详情

如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是(  )

A.     B.       C.            D.

D

解析试题分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
解:∵四边形ABCD是菱形,
∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
∴BC==5cm,
∴S菱形ABCD==×6×8=24cm2
∵S菱形ABCD=BC×AD,
∴BC×AE=24,
∴AE=cm,
考点:菱形的性质
点评:此题难度不大,主要处理考察菱形的性质外,还考察菱形的面积与对角线之间的关系。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的
EF
上,求
BC
的长度及扇形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,点B、C分别在DE、EF.(B、C分别不与E、F重合)
(1)如图1,当AE平分∠BAC时,
①求证:BD=CF;
②当AD=AB时,求∠ABD的度数;
(2)如图2,当AE不平分∠BAC时,若△ADB是一个等腰三角形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD边长为6
3
,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD为2cm.B、C两点在以点A为圆心的
EF
上,求
BC
的长度及扇形ABC的面积.(结果保留π)

查看答案和解析>>

同步练习册答案