精英家教网 > 初中数学 > 题目详情

按要求作图(本题5分)(不写作法,但要保留作图痕迹)

已知点P、Q分别在∠AOB的边OA,OB上(如图 ⑾   ).

① 作直线PQ,

② 过点P作OB的垂线PC,

③ 过点Q作OA的平行线QD.

 

【答案】

见解析

 【解析】此题考查学生的基本作图能力。                                            

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

按要求作图(本题5分)(不写作法,但要保留作图痕迹)

已知点P、Q分别在∠AOB的边OA,OB上(如图⑾   ).

① 作直线PQ,

② 过点P作OB的垂线PC,

③ 过点Q作OA的平行线QD.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.

(1)实践与操作 利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

①作△ABC的外接圆,圆心为O;

②以线段AC为一边,在AC的右侧作等边△ACD;

③连接BD,交⊙O于点F,连接AE,

(2)综合与运用  在你所作的图中,若AB=4,BC=2,则:

①AD与⊙O的位置关系是______.(2分)

②线段AE的长为__________.(2分)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE,
(2)综合与运用 在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是______.(2分)
②线段AE的长为__________.(2分)

查看答案和解析>>

科目:初中数学 来源: 题型:

观察可得最简公分母是(x+1)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

【解答】

(2)方程的两边同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

检验:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

则原方程的解为:x=3.

【点评】此题考查了实数的混合运算与分式方程的解法.此题难度不大,但注意掌握绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,注意解分式方程一定要验根.

20.(本题满分5分)如图,已知△ABC,且∠ACB=90°。

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明);

①以点A为圆心,BC边的长为半径作⊙A;

②以点B为顶点,在AB边的下方作∠ABD=∠BAC.

(2)请判断直线BD与⊙A的位置关系(不必证明).

 


查看答案和解析>>

同步练习册答案