精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系,将点A向右平移6个单位长度,得到点B.

(1)直接写出点B的坐标;

(2)若抛物线y=-x2+bx+c经过点A,B求抛物线的表达式;

(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段AB有且只有一个公共点时,求抛物线顶点横坐标的取值范围.

【答案】(1);(2)抛物线表达式为;(3)

【解析】

1)根据点的平移规律可得点B坐标;

2)根据AB两点坐标,利用待定系数法可求得解析式;

3)由顶点在直线l上可设顶点坐标为(tt+2),继而可得抛物线解析式为y=﹣(xt2+t+2,根据抛物线与线段AB有一个公共点,考虑抛物线过点A或点B临界情况可得t的范围.

(1)根据平移的性质,可得:

(2) ∵抛物线过点,∴,解得:,∴抛物线表达式为

(3)∵抛物线顶点在直线 ,∴抛物线顶点坐标为 ,∴抛物线表达式可化为

代入表达式可得:

解得:

代入表达式可得

解得:

综上可知:的取值范围时

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求函数y=kx+b和y=的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA 向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点.点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm .当点Q到达顶点C时,P,Q同时停止运动.设P, Q两点运动时间为t秒.

(1)当t为何值时,PQ∥BC ?

(2)设四边形PQCB的面积为y,求y关于t的函数解析式;

(3)四边形PQCB的面积与△APQ面积比能为3:2吗?若能,求出此时t的值;若不能,请说明理由;

(4)当t为何值时,△AEQ为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CDABADBC.已知A(20)B(60)D(03),函数y(x0)的图象G经过点C

(1)求点C的坐标和函数y(x0)的表达式;

(2)将四边形ABCD向上平移2个单位得到四边形A'B'C'D',问点B'是否落在图象G上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.

1)试求yx之间的函数关系式;

2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,斜边,将绕点顺时针旋转,如图1,连接

(1)填空:  

(2)如图1,连接,作,垂足为,求的长度;

(3)如图2,点同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2-4x+c(a≠0)与反比例函数y=的图象相交于B点,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2-4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为_______

查看答案和解析>>

同步练习册答案