精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-4ax+b交x轴于A(1,0)、B两点,交y轴于C(0,3);
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使∠PCB+∠ACB=45°?若存在,求出P点坐标;若不存在,请说明理由;
(3)将直线AC沿x轴的正方向平移,平移后的直线交y轴于点M,交抛物线于点N,问是否存在M、N使四边形ACMN为等腰梯形?若存在,求出M、N的坐标;若不存在,请说明理由.
精英家教网
分析:(1)根据抛物线y=ax2-4ax+b交x轴于A(1,0),交y轴于C(0,3),直接求出即可;
(2)利用三角形对应角之间的关系得出;
(3)根据等腰梯形的性质得出∠CME=∠ANF,进而求出CM的长,以及M,N点的坐标.
解答:解:(1)∵抛物线y=ax2-4ax+b交x轴于A(1,0)、B两点,交y轴于C(0,3);
∴将A(1,0),C(0,3),代入解析式即可求出:
0=a-4a+b,b=3,
∴a=1,
y=x2-4x+3;

(2)解法一:利用余弦定理(超纲,可以尝试解答.)
设P(m,n),
∵B点坐标为:(3,0),C点坐标为:(0,3),
∴CO=BO=3,
∴∠OCB=45°,
∵要使∠PCB+∠ACB=45°,精英家教网
∴∠OCA=∠PCB,
∴cos∠OCA=cos∠PCB,
∵OA=1,OC=3,
∴cos∠OCA=
3
10
10

∴PC=
m2+(n-3)2
,PB=
(m-3)2+n2

BC=3
2

cos∠PCB=
BC2+PC2-BP2
2PC•BC
=
3
10
10

解得m=
7
2
或m=2,即n=
5
4
或n=-1,
P1(
7
2
5
4
)
、P2(2,-1);

解法二:利用三角形相似
∵B点坐标为:(3,0),C点坐标为:(0,3),
∴CO=BO=3,
∴∠OCB=45°,
∵要使∠PCB+∠ACB=45°,
∴∠OCA=∠PCB,
P点有两种情况,一种是在于BC的上方的抛物线上,另一种是在BC下方的抛物线上.
①设CP交x轴于点D,当点D在BC上方时,在OC上取点E,使OE=OA=1,
∵△OEA为等腰直角三角形,
∴∠OEA=45°,
∴∠CEA=135°,
∵∠CBA=45°,
∴∠CBD=∠CEA=135°,
∵∠ECA=∠BCD,
∴△ECA∽△BCD,
EC
EA
=
BC
BD

3-1
2
=
3
2
BD

∴BD=3,
∴点D为(6,0),
∴过C,D所在直线的解析式为:y=-
1
2
x+3,
∵直线与抛物线交于P点,设为P(m,n)
n=m2-4m+3
n=-
1
2
m+3

∴m=
7
2
,n=
5
4

∴P点的坐标为(
7
2
5
4
).
②设CP′交x轴于点D′,当点D′在BC下方时,在y轴负半轴上取点F,使OF=OA=1,
∵△OFA为等腰直角三角形,
∴∠CFA=45°,
∴∠CFA=∠CBD′
∵∠OCA=∠PCB,
∴△FCA∽△BCD′,
CF
FA
=
CB
BD′

3+1
2
=
3
2
BD′

∴BD′=
3
2

∴点D′为(
3
2
,0),
∴过C,D′所在直线的解析式为:y=-2x+3,
∵直线与抛物线交于P′点,设为P′(m′,n′),
n′=m2-4m′+3
n′=-2m′+3

∴P′点的坐标为(2,-1).
综上两种情况,P点的坐标为(
7
2
5
4
)、(2,-1).

(3)作MN∥AC,CE⊥MN,AF⊥MN,QN⊥BO,
∴四边形CAFE是矩形,
∴∠CME=∠OCA,
∵∠OCA+∠CAO=90°,
∠MCE+∠OCA=90°,
∴∠MCE=∠CAO,
同理可得:要使四边形ACMN为等腰梯形,
∴∠CME=∠ANF,
∵AC∥MN,精英家教网
∴直线MN的解析式可以设为:y=-3x+3+k,
联立y=x2-4x+3;
得出两图象在第四象限交点的横坐标为:
1+
1+4k
2

分别代入两函数解析式即可得出:纵坐标为:
3
2
+k-
3
2
1+4k

∴AQ=
1+
1+4k
2
-1=
1+4k
-1
2

QN=
3
2
+k-
3
2
1+4k

∵MC=AN,
∴MC2=AQ2+QN2
∴k2=(
1+4k
-1
2
2+(
3
2
+k-
3
2
1+4k
2
解得:k=
10
9

∴OM=
10
9
+3=
37
9

1+
1+4k
2
=
5
3
3
2
+k-
3
2
1+4k
=-
8
9

故此时:M(0,
37
9
)
N(
5
3
,-
8
9
)
点评:此题主要考查了待定系数法求二次函数解析式以及等腰梯形的性质,题目综合性较强,难度较大,需细心分析得出.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案