【题目】对一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再一次折叠,使点A落在MN的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;
第三步:再沿EA′所在的直线折叠,点B落在AD的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.
(1)证明:∠ABE=30°;
(2)证明:四边形BFB′E为菱形.
【答案】见解析
【解析】
(1)根据点M是AB的中点判断出A′是EF的中点,然后判断出BA′垂直平分EF,根据线段垂直平分线上的点到两端点的距离相等可得BE=BF,再根据等腰三角形三线合一的性质可得∠A′BE=∠A′BF,根据翻折的性质可得∠ABE=∠A′BE,然后根据矩形的四个角都是直角计算即可得证;
(2)根据翻折变换的性质可得BE=B′E,BF=B′F,然后求出BE=B′E=B′F=BF,再根据四条边都相等的四边形是菱形证明.
(1)∵对折AD与BC重合,折痕是MN,
∴点M是AB的中点,
∴A′是EF的中点,
∵∠BA′E=∠A=90°,
∴BA′垂直平分EF,
∴BE=BF,
∴∠A′BE=∠A′BF,
由翻折的性质,∠ABE=∠A′BE,
∴∠ABE=∠A′BE=∠A′BF,
∴∠ABE= ×90°=30°;
(2)∵沿EA′所在的直线折叠,点B落在AD上的点B′处,
∴BE=B′E,BF=B′F,
∵BE=BF,
∴BE=B′E=B′F=BF,
∴四边形BFB′E为菱形。
科目:初中数学 来源: 题型:
【题目】天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:.
(1)李红第几天生产的粽子数量为260只?
(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上.则平移后的抛物线解析式为 ( )
A. y=x2+2x+1 B. y=x2+2x-1 C. y=x2-2x+1 D. y=x2-2x-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com