精英家教网 > 初中数学 > 题目详情
23、关于x的一元二次方程x2-4x+c=0有实数根,且c为正整数.
(1)求c的值;
(2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2-4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;
(3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.
分析:(1)若关于x的一元二次方程有实数根,那么根的判别式必大于等于0,可据此求出c的取值范围,由于c为正整数,即可求出符合条件的c值.
(2)首先根据方程有两个整数根以及抛物线与x轴有两个不同的交点,确定c的值,从而得到抛物线的解析式和对称轴方程;由于四边形OBPC是直角梯形,且CP∥OB,P在抛物线的对称轴上,那么PC的长正好与抛物线对称轴的值相同,由此得解.
(3)首先将(2)所得抛物线的解析式化为顶点坐标式,即可得到此时顶点D的坐标;
①抛物线向左平移,可先设出平移后抛物线的解析式;当点P位于抛物线对称轴右侧的函数图象上时,可将点P坐标代入抛物线的解析式中,即可求得平移的距离;当点O位于抛物线对称轴右侧的函数图象上时,将点O的坐标代入抛物线的解析式中,同样能求出此时平移的距离;根据上面两种情况所得的m值,即可得到m的取值范围.
②抛物线向右平移,方法同①.
解答:解:(1)∵关于x的一元二次方程x2-4x+c=0有实数根,
∴△=16-4c≥0,∴c≤4.(1分)
又∵c为正整数,∴c=1,2,3,4.(2分)

(2)∵方程两根均为整数,∴c=3,4;(3分)
又∵抛物线与x轴交于A、B两点,∴c=3;
∴抛物线的解析式为y=x2-4x+3;(4分)
∴抛物线的对称轴为x=2.
∵四边形OBPC为直角梯形,且∠COB=90°,
∴PC∥BO,∵P点在对称轴上,∴PC=2.(5分)

(3)由(2)知:y=x2-4x+3=(x-2)2-1;
①当抛物线向左平移时,设平移后的抛物线解析式为:y=(x-2+k)2-1;
易知P(2,3),当抛物线对称轴右侧的函数图象经过点P时,则有:
(2-2+k)2-1=3,
解得k=2(负值舍去);
即y=x2-1,此时m=0;
当抛物线对称轴右侧的函数图象经过点O时,则有:
(0-2+k)2-1=0,
解得k=1(舍去),k=3;
即y=(x-1)2-1,此时m=-1;
故当抛物线向作平移时,-2<m≤0(或-1≤m≤0).
②当抛物线向右平移时,同①可求得2<m≤4;
综上所述,-2<m≤0或2<m≤4.(7分)(写对一个给1分)
点评:此题考查了根的判别式、直角梯形的性质、二次函数解析式的确定以及函数图象的平移等知识.在(3)题中,抛物线向左或向右平移都有符合条件的m值,因此需要分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案