分析 (1)依题意画出图形,如图1所示,先判断出∠BPD=∠EPA,从而得出△PDB≌△PAE,简单计算即可;
(2)先判断出∠CBA=∠CAB,∠BPD=∠EPA,从而得出△PDB≌△PAE,简单代换即可;
(3)先求出BH=2-$\sqrt{3}$,再根据勾股定理得,AB=2$\sqrt{2-\sqrt{3}}$,然后判断出△PAD∽△CAB,从而求出AD.
解答 解:(1)依题意补全图形,如图1所示,
过点P作PE∥AC,
∴∠PEB=∠CAB,
∵AB=BC,
∴∠CBA=∠CAB,
∴∠PEB=∠PBE,
∴PB=PE,
∵∠BPD+∠DPE=∠EPA+∠DPE=90°,
∴∠BPD=∠EPA,
∵PA=PD,
∴△PDB≌△PAE,
∵∠PBA=∠PEB=$\frac{1}{2}$(180°-90°)=45°,
∴∠PBD=∠PEA=180°-∠PEB=135°,
∴∠DBA=∠PBD-∠PBA=90°;
(2)如图2,
过点P作PE∥AC,
∴∠PEB=∠CAB,
∵AC=BC,
∴∠CBA=∠CAB,
∴∠PEB=∠PBE,
∴PB=PE,
∵∠BPD+∠DPE=∠EPA+∠DPE=α,
∴∠BPD=∠EPA,
∵PA=PD,
∴△PDB≌△PAE,
∵∠PBA=∠PEB=$\frac{1}{2}$(180°-α)=90°-$\frac{1}{2}$α,
∴∠PBD=∠PEA=180°-∠PEB=90°+$\frac{1}{2}$α,
∴∠DBA=∠PBD-∠PBA=α;
(3)如图3,
作AH⊥BC,
∵∠ACB=30°,AC=2,
∴AH=1,CH=$\sqrt{3}$,
∴BH=2-$\sqrt{3}$,
根据勾股定理得,AB=$\sqrt{A{H}^{2}+B{H}^{2}}$=2$\sqrt{2-\sqrt{3}}$,
∵∠APC=135°,
∴∠APH=45°,
∴AP=$\sqrt{2}$AH=$\sqrt{2}$,
∵∠APD=∠ACB=30°,AC=BC,AP=DP,
∴△PAD∽△CAB,
∴$\frac{AD}{AB}$=$\frac{AP}{AC}$=$\frac{\sqrt{2}}{2}$,
∴AD=$\frac{\sqrt{2}}{2}$AB=$\frac{\sqrt{2}}{2}$×2$\sqrt{2-\sqrt{3}}$=$\sqrt{2\sqrt{2}-\sqrt{6}}$.
点评 此题是几何变换综合题,主要考查了全等三角形的性质和判定,相似三角形的性质和判定,勾股定理,判断△PDB≌△PAE是解本题的关键,也是难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 17°28′ | B. | 18°28′ | C. | 27°28′ | D. | 27°32′ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com