【题目】综合与探究:
如图1,抛物线与
轴交于
两点(点
在点
的左侧),顶点为
,
为对称轴右侧抛物线的一个动点,直线
与
轴于点
,过点
作
,交
轴于点
.
(1)求直线的函数表达式及点
的坐标;
(2)如图2,当轴时,将
以每秒1个单位长度的速度沿
轴的正方向平移,当点
与点
重合时停止平移.设平移
秒时,在平移过程中
与四边形
重叠部分的面积为
,求
关于
的函数关系式,并写出自变量
的取值范围;
(3)如图3,过点作
轴的平行线,交直线
于点
,直线
与
交于点
,设点
的横坐标为
.
①当时,求
的值;
②试探究点在运动过程中,是否存在值
,使四边形
是菱形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
【答案】(1),
;(2)当
时,
;当
时,
;(3)①
或
,②
【解析】
(1)先通过抛物线函数关系式求出与x轴的两个交点A、B的坐标以及顶点D的坐标,再利用待定系数可求得直线AD的函数表达式,令x=0,即可求得点C的坐标;
(2)先求出点P坐标,通过平移可求得
,从而可得OF的长为
,当
时,重叠部分为△AOC,求出△AOC的面积即可,当
时,
平移
秒到
的位置,
交
于点
,如图,重叠部分为四边形
,根据
结合相似三角形的性质可表示出
的长,再根据四边形
的面积=
的面积-
的面积即可求出
关于
的函数关系式;
(3)①过点作
轴于点
,交
于点
,利用点P、D的坐标表示出DN、NQ的长,再根据平行得
,结合
列出方程求解即可;
②当点P在第一象限时,过点P作PG⊥x轴于点G,易证△PGF∽△COA,故可设PG=4k,FG=3k,由勾股定理得PF=5k,由菱形得AF=PF=5k,故可表示出点P坐标,将点P坐标代入抛物线函数关系式列出方程求解即可,当点P在第四象限时,同理可得点P坐标.
解:(1),
当时,
,解得
,
∵点在点
的左侧,
∴,
∵,即
,
∴,
设直线的函数表达式为
,
∵直线过点
,
∴,解得
,
∴,
当时,
,
∴.
(2)当时,
,
解得:,
∵点在抛物线对称轴的右侧,
∴ ,
∴,
∴,
当时,
,
当时,
平移
秒到
的位置,
交
于点
,如图,
则,
∵,
∴,
又∵,
∴,
∴,即
,
∴,
∴
=
.
综上所述,当时,
;
当时,
;
(3)①如图,过点作
轴于点
,交
于点
.
∵点的横坐标为
,
∴,
∵,
∴,
,
∵轴,
∴,
当时,
,
∴,即
,
当时,
,
∵点在抛物线对称轴的右侧,
∴;
当时,
,
∵点在抛物线对称轴的右侧,
∴,
综上所述,或
,
②如图,当点P在第一象限时,过点P作PG⊥x轴于点G,
∵PF∥AC,
∴∠PFG=∠CAO
又∵∠PGF=∠COA=90°,
∴△PGF∽△COA,
∴,
∴,
∴,
∴设PG=4k,FG=3k,则PF=5k,
∵四边形是菱形
∴AF=PF=5k,
又∵点A(-2,0),
∴点P(-2+8k,4k)
∵点P在抛物线的图像上,
∴,
整理得
解得(舍去)
∴
∴点P的坐标为,
如图,当点P在第四象限时,过点P作PK⊥x轴于点K,
∵PF∥AC,
∴∠PFK=∠CAO,
又∵∠PKF=∠COA=90°,
∴△PKF∽△COA,
∴,
∴,
∴,
∴设PK=4a,FK=3a,则PF=5a,
∵四边形是菱形
∴AF=PF=5a,
又∵点A(-2,0),
∴点P(-2+2a,-4a)
∵点P在抛物线的图像上,
∴,
整理得
解得(舍去)
∴
∴点P的坐标为,
综上所述,存在,使四边形
是菱形,此时点
的坐标为
.
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:
),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:
≈1.73,
≈1.41)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=4,以AB为直径的⊙O交BC于点D,交AC于点E,点P是AB的延长线上一点,且∠PDB=∠A,连接DE,OE.
(1)求证:PD是⊙O的切线.
(2)填空:①当∠P的度数为______时,四边形OBDE是菱形;
②当∠BAC=45°时,△CDE的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象与一次函数
的图象在第一象限交于
两点,一次函数的图象与
轴交于点
.
(1)求反比例函数和一次函数的表达式;
(2)当为何值时,
?
(3)已知点,过点
作
轴的平行线,在第一象限内交一次函数
的图象于点
,交反比例函数
的图象于点
.结合函数图象直接写出当
时
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于点M.
(1)求证:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是 ( )
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差=0.128,乙组数据的方差
=0.036,则甲组数据更稳定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com