【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点。
(1)求b、c的值;
(2)P为抛物线上的点,且满足S△PAB=8,求P点的坐标
(3)设抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由。
【答案】(1)b=-2,c=-3;(2)符合x的值为点P有三个;(3)Q点的坐标为(1,-2)
【解析】
(1)抛物线y=x2+bx+c与x轴的两个交点分别为A(-1,0),B(3,0),把它们分别代入得到二元一次方程组,解这个方程组求得b,c值;
(2)设点P的坐标为(x,y),根据S△PAB=8,列出方程求得y值,分别代入从而求得点P的坐标;
(3)由AC长为定值,要使△QAC的周长最小,只需QA+QC最小.由几何知识可知,Q是直线BC与对称轴x=1的交点,再求得BC的直线解析式,从而求得点Q的坐标.
(1)根据题意可得,1-b+c=0;9+3b+c=0
∴b=-2,c=-3
∴抛物线的解析式为:y=x2-2x-3.
(2)设点P的坐标为(x,y)
根据题意可知,S△PAB=×4|y|=8,∴|y|=4,∴y=±4
当y=4时,x2-2x-3=4,∴x=或x=-+1
当y=-4时,x2-2x-3=-4,∴x=1
∴当P点的坐标分别为(,4)、(-+1,4)、(1,-4)时,
S△PAB=8;
(3)在抛物线y=x2-2x-3的对称轴上存在点Q,使得△QAC的周长最小.
∵AC长为定值,
∴要使△QAC的周长最小,只需QA+QC最小.
∵点A关于对称轴x=1的对称点是B(3,0),
∴由几何知识可知,Q是直线BC与对称轴x=1的交点,
抛物线y=x2-2x-3与y轴交点C的坐标为(0,-3),设直线BC的解析式为y=kx-3.
∵直线BC过点B(3,0),
∴3k-3=0,
∴k=1.
∴直线BC的解析式为y=x-3,
∴当x=1时,y=-2.
∴点Q的坐标为(1,-2).
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求一次函数和反比例函数的解析式;
(2)求点C的坐标;
(3)结合图象直接写出不等式0<x+m≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,矩形OABC的两个顶点A,C分别在x轴,y轴上,点B的坐标是(8,2),点P是边BC上的一个动点,连接AP,以AP为一边朝点B方向作正方形PADE,连接OP并延长与DE交于点M,设CP=a(a>0).
(1)请用含a的代数式表示点P,E的坐标.
(2)连接OE,并把OE绕点E逆时针方向旋转90°得EF.如图2,若点F恰好落在x轴的正半轴上,求a与的值.
(3)①如图1,当点M为DE的中点时,求a的值.
②在①的前提下,并且当a>4时,OP的延长线上存在点Q,使得EQ+PQ有最小值,请直接写出EQ+PQ的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“转化”思想求方程的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E,F分别为BC上的点,EF=,∠BAC=135°,∠EAF=90°,tan∠AEF=1.
(1)若1<BE<2,求CF的取值范围;
(2)若AB=,求△ACF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠C=90°,AB=8,点O是AB的中点.将一个边长足够大的Rt△DEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DE与AC边交于点G,EF与BC边交于点H.
(1)当点G在AC边什么位置时,四边形CGOH是正方形.
(2)等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2,为什么?
(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com