精英家教网 > 初中数学 > 题目详情
己知关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根是1,且a,b满足b=
a-2
+
2-a
-3
,求这个一元二次方程的另一根.
分析:根据二次根式有意义的条件可求出a=2,则b=-3,原方程为2x2-3x+c=0,设方程另一个根为t,根据根与系数的关系得到1+t=-
-3
2
,然后解一次方程即可.
解答:解:∵
a-2≥0
2-a≥0

∴a=2,
∴b=-3,
∴原方程为2x2-3x+c=0,
设方程另一个根为t,
∴1+t=-
-3
2

∴t=
1
2

即这个一元二次方程的另一根为
1
2
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了二次根式有意义的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:
 

(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年福建省龙岩市长汀县新桥二中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
把x=代入已知方程,得(2+-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:______;
(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源:2013年广东省湛江市中考数学模拟试卷(七)(解析版) 题型:解答题

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
把x=代入已知方程,得(2+-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:______;
(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源:2012年贵州省黔西南州中考数学试卷(解析版) 题型:解答题

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
把x=代入已知方程,得(2+-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:______;
(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

同步练习册答案