精英家教网 > 初中数学 > 题目详情

如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.

证明:AB=AD+BE.
∵DA⊥AB于A,EB⊥AB于B.
∴∠A=∠B;
∵∠DCE=90°,
∴∠ADC+∠ACD=90°,∠ACD+∠ECB=90°;
∴∠ADC=∠ECB;
又∵DC=CE,
在△ACD和△BEC中,

∴△ACD≌△BEC;
∴AD=BC,AC=BE;
∴AB=AC+CB=BE+AD.
分析:先证明△ACD≌△BEC,根据全等三角形的对应边相等得出其两边相等,再利用边与边之间的关系即可得出AB是BE与AD的和.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.证明一条线段等于两条线段和的问题经常用三角形全等来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD⊥AB,DE⊥BC,垂足分别为D、E.则与Rt△CDE(本身除外)相似的三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,点DBC的中点,作射线AD,在线段AD及其延长线上分别取点EF,连结CEBF. 添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是    (不添加辅助线).

 


查看答案和解析>>

同步练习册答案