精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,菱形的顶点与原点重合,点轴的正半轴上,点在反比例函数的图象上,点的坐标为

1)求的值;

2)若将菱形沿轴正方向平移,当菱形的另一个顶点恰好落在函数的图象上时,求菱形平移的距离.

【答案】1;(2

【解析】

1)根据勾股定理求出OD的长度,再结合菱形的性质定理可得A点坐标,由此可求k的值;

2BD可能落在反比例函数的图象上,分两种情况讨论,根据平移后纵坐标不变,求得平移后点的横坐标,由此可求得平移后的距离.

解:(1)过点于点轴于点

∵点的坐标为

∴点的坐标为

2)由(1)可知反比例函数的解析式为

将菱形沿轴正方向平移,

①若使点落在反比例函数的图象上的点处,

点的纵坐标为2

设点

,解得

∴菱形平移的距离为

②同理,若使点落在反比例函数的图象上,对应点的纵坐标为3

此时该点横坐标为:

所以,菱形平移的距离为

综上,菱形平移的距离为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点CD为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连CD.则下列说法错误的是

A.射线OEAOB的平分线

BCOD是等腰三角形

CCD两点关于OE所在直线对称

DOE两点关于CD所在直线对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中, .点是斜边AB上一个动点.过点 垂足为 交边(或边) 于点 的面积为,则之间的函数图象大致为(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,边长为1,∠A60,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,,则四边形A2019B2019C2019D2019的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,

1)求抛物线的解析式和对称轴;

2是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);

3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.

商品

顾客人数

100

×

217

×

×

200

×

300

×

×

85

×

×

×

98

×

×

×

1)估计顾客同时购买乙和丙的概率为__________

2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买__________(填乙、丙、丁)商品的可能性最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线

1)当时,求抛物线的顶点坐标;

2)已知点,抛物线轴交于点(不与重合),将点绕点逆时针旋转90°至点

①直接写出点的坐标(用含的代数式表示);

②若抛物线与线段有且仅有一个公共点,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°ACBC,将ABC沿EF折叠,使点A落在直角边BC上的D点处,设EFABAC边分别交于点E、点F,如果折叠后CDFBDE均为等腰三角形,那么∠B_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ACBD相交于点O,且AOCOABCD

1)求证:ABCD

2)若∠OAB=∠OBA,求证:四边形ABCD是矩形.

查看答案和解析>>

同步练习册答案