分析:如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得ab=12×2=24,a+b=12
-c;根据勾股定理a
2+b
2=c
2,可解得c=5
.直角三角形外接圆其实就是以斜边的中点为圆心,斜边长的一半为半径的圆,因此它的半径是
cm.
解答:如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:
S
△=
ab=12,a+b+c=12
,
∴ab=24,a+b=12
-c,
根据勾股定理得
a
2+b
2=c
2,
(a+b)
2-2ab=c
2,
(12
-c)
2-48=c
2,
解得c=5
,
所以半径是
cm.
点评:本题考查的是三角形的外接圆与外心以及勾股定理的运用,得出斜边的长是解决本题的关键.