精英家教网 > 初中数学 > 题目详情
6.如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积.

分析 过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形.利用相应的性质求解即可.

解答 解:观察图形可知,四边形BEFC是矩形.
则CF=EB=20m,BC=EF=5m,斜坡AB的坡度为1:2.5,
则AE=2.5×BE=50m,DF=2CF=40m.
则AB=AE+EF+FB=95(m).
∴大坝的截面面积=$\frac{1}{2}$(5+95)×20=200m2

点评 此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.四边形ABCD和CEFG都是正方形(正方形的性质是四条边都相等,四个角都是直角),连结BG并延长DE于点H.
(1)求证:△BCG≌△DEC;
(2)求证:BH⊥DE;
(3)若正方形ABCD的边长为4 cm,当CG的长为多少时,BH垂直平分DE?写出你的推演过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若AF=6,EF=2$\sqrt{5}$,求⊙O 的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)如图1,在四边形ADBC中,∠ACB=∠ADB=90°,将△BCD绕点D逆时针旋转90°,则点B恰好落在点A处,得到旋转后的△AED,则AC、BC、CD满足的数量关系式是AC+BC=$\sqrt{2}$CD.
(2)如图2,AB是⊙O的直径,点C、D在⊙O上,且$\widehat{AD}$=$\widehat{BD}$,若AB=13,BC=12,求CD的长.
(3)如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.实验与操作:
在Rt△ABC中,∠ABC=90°,∠ACB=30°,将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点),设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D
猜想与证明;
(1)如图1,当AC′经过点B时,探究下列问题:
①此时,旋转角α的度数为60°.②判断此时四边形AB′DC的形状,并证明你的猜想;
(2)如图2,当旋转角α=90°时,求证:CD=C′D;
(3)如图3,对任意旋转角0°<α<180°,连接AD,判断线段AD与CC′之间的位置关系(直接写出结论,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.一辆汽车匀速行驶,在a秒内行驶m米,则它在10秒内可行驶(  )
A.$\frac{10a}{m}$米B.$\frac{10m}{a}$米C.$\frac{am}{10}$米D.$\frac{m}{10a}$米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图:已知抛物线y=-$\frac{1}{2m}$(x+3m)(x-m)(m>0)与x轴交于A、B两点(点A在点B左侧),与y交于点C,抛物线对称轴与x轴交于点D,$E(\frac{{9\sqrt{3}}}{2},0)$为x轴上一点.
(1)写出点A、B、C的坐标(用m表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D、E重合),过P作PQ⊥EC作PH⊥DF,判断$\frac{PQ}{DC}+\frac{PH}{EF}$是否为定值,若是,请求出定值,若不是,请说明理由;
(3)如图②,将线段AB绕点A顺时针旋转30°,与y相交于点M,连接BM.点S是线段AM的中点,连接OS.若点N是线段BM上一个动点,连接SN,将△SMN绕点S逆时针旋转60°得到△SOT,延长TO交BM于点K.若△KTN的面积等于△ABM的面积的$\frac{1}{12}$,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.比较大小:-|-5|<(-2)2(填“>”或“<”).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,∠ABC=140°,D为圆上一点,则∠ADC的度数为140°或40°.

查看答案和解析>>

同步练习册答案