精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有(  )                精英家教网
A、6个B、5个C、4个D、3个
分析:根据已知条件,结合图形,可得知等腰三角形有△ABC,△AED,△BOC,△EOD,△BED和△EDC共6个.
解答:解:①∵AB=AC,
∴△ABC是等腰三角形;
②∵AB=AC,
∴∠B=∠C,
∵BD,CE是角平分线,
∴∠ABD=∠ACE,∠OBC=∠OCB,
∴△BOC是等腰三角形;
③∵△EOB≌△DOC(ASA),
∴OE=OD,ED∥BC
∴△EOD是等腰三角形;
④∵ED∥BC,
∴∠AED=∠B,∠ADE=∠C,
∴∠AED=∠ADE,
∴△AED是等腰三角形;
⑤∵△ABC是等腰三角形,BD,CE是角平分线,
∴∠ABC=∠ACB,∠ECB=∠DBC,
又∵BC=BC,
∴△EBC≌△DCB,
∴BE=CD,
∴AE=AD,
AE
AB
=
AD
AC
,∠A=∠A,
∴△AED∽△ABC,
∴∠AED=∠ABC,
∴∠ABC+∠BED=180°,
∴DE∥BC,
∴∠EDB=∠DBC=∠EBD,
∴ED=EB,
即△BED是等腰三角形,
同理可证△EDC是等腰三角形.
故选A.
点评:考查等腰三角形的判定与性质及角平分线的性质;得到△EOB≌△DOC是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案