精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上F处,求tan∠AFE.

【答案】

【解析】根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.

解:根据折叠的性质,∠EFC=∠EDC=90°,

∠AFE+∠BFC=90°.

Rt△BCF中,∠BCF+∠BFC=90°,

∴∠AFE=∠BCF.

Rt△BFC中,根据折叠的性质,有CF=CD,BC=8,

CF=CD=10,由勾股定理易得BF=6,则tan∠BCF=

∴tan∠AFE=tan∠BCF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点AAEBC,垂足为E,连接DEF为线段DE上一点,且AFE=B

1)求证:ADF∽△DEC

2)若AB=8AD=6AF=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移5个单位长度,再向下平移3个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度)

1)在图中画出平移后的△A1B1C1

2)直接写出△A1B1C1各顶点的坐标.

A1______B1______C1______

3)在x轴上找到一点M,当AM+A1M取最小值时,M点的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线ABx轴于点Aa0),y轴于点B0b),ab满足

1A的坐标为 B的坐标为

2如图1若点C的坐标为(-3,-2),BEAC于点EODOCBE延长线于D试求点D的坐标

3如图2MN分别为OAOB边上的点OM=ONOPANAB于点P过点P PGBMAN的延长线于点G请写出线段AGOPPG之间的数量关系并证明你的结论

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cos A的值为(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201881日,郑州市物价局召开居民使用天然气销售价格新闻通气会,宣布郑州市天然气价格调整方案如下:

一户居民一个月天然气用量的范围

天然气价格(单位:元/立方米)

不超过50立方米

2.56

超过50立方米的部分

3.33

1)若张老师家9月份使用天然气36立方米,则需缴纳天然气费为______元;

2)若张老师家10月份使用天然气立方米,则需缴纳的天然气费为_______元;

3)依此方案计算,若张老师家11月份实际缴纳天然气费201.26元,求张老师家11月份使用天然气多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为等边三角形ABC内的一点,且P到三个顶点ABC的距离分别为3,4,5,则ABC的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6AC=10ADBC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE

(1)求证:△AEC是直角三角形.

(2)BC边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案