精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC上的点,且满足AC=DC=DE=BE=1,则tanA=

【答案】 +1
【解析】解:设∠B=x°, ∵BE=DE,
∴∠B=∠BDE=x°,
∴∠CED=2x°,
又∵DE=DC,
∴∠ECD=∠CED=2x°.
∴∠DCA=∠ACB﹣∠ECD=90°﹣2x°.
∵直角△ABC中,∠A=90°﹣∠A=90°﹣x°.
又∵CA=CD,
∴∠ADC=∠A=90°﹣x°.
∵△ACD中,∠ACD+∠A+∠ADC=180°,
∴(90﹣2x)+2(90﹣x)=180°,
解得x=22.5°,则∠CED=∠ECD=45°,
∴△ECD是等腰直角三角形,
∴EC= CD=
∴BC= +1,
∴tanA= = +1.
故答案是: +1.
【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CFAD于点G,交BE于点H,下面说法中正确的序号是_____

①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为(
A.40°
B.45°
C.50°
D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)﹣18×(﹣2)÷3

(2)(﹣)×(﹣90)÷

(3)﹣2.5÷×(﹣);

(4)(﹣10)2﹣[16+(﹣3)2]

(5)(+2)÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:

类别

频数(人数)

频率

文学

m

0.42

艺术

22

0.11

科普

66

n

其他

28

合计

1


(1)表中m= , n=
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.

(1)求梯子底端B外移距离BD的长度;

(2)猜想CE与BE的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)计算: +|2﹣ |;
(2)当关于x的方程x2﹣2x+c=0有实数根时,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2﹣2x与x轴正半轴相交于点A,顶点为B.
(1)用含a的式子表示点B的坐标;
(2)经过点C(0,﹣2)的直线AC与OB(O为原点)相交于点D,与抛物线的对称轴相交于点E,△OCD≌△BED,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=2CD,AE⊥AB交BD的延长线于E,则 =

查看答案和解析>>

同步练习册答案