【题目】某商品专营店购进一批进价为16元/件的商品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若每件按20元的价格销售时,每月能卖360件;若每件每涨1元,每天少卖10件;设销售价格为x(元/件)时,每天销售y(件),日总利润为W元.物价局规定:此类商品的售价不得低于进价,又不得高于进价的3倍销售,即16≤x≤48.
(利润=售价﹣进价,或总利润=单间利润×总销售件数)
(1)售价25元/件时,日销量 件,日总利润为 元;
(2)求y与x之间的关系式;
(3)求W与x之间的关系式,问销售价格为多少时,才能使每日获得最大利润?日最大利润是多少?
(4)商店为减少库存,在保证日利润3000元的前题条件下,商店该以多少元/件销售.
【答案】(1)310,2790;(2)y=﹣10x+560;(3)售价为36元/件时,日获利最大,最大利润为4000元;(4)售价为26元/件时,库存小,同时每天能获利3000元.
【解析】
试题分析:(1)根据每件按20元的价格销售时,每月能卖360件;若每件每涨1元,每天少卖10件,即可求出日销量以及总利润;
(2)利用日销量=360﹣超过20的钱数×10,进而得出答案;
(3)利用W=y(x﹣16)进而得出y与x之间的关系,进而求出最值;
(4)利用在保证日利润3000元的前题条件下,则W=3000,进而解方程求出答案.
解:(1)售价25元/件时,日销量为:360﹣(25﹣20)×10=310(件),
日总润为:310×(25﹣16)=2790(元).
故答案为:310,2790;
(2)由题意可得:y=360﹣10(x﹣20)=﹣10x+560;
(3)由题意可得:
W=y(x﹣16)
=(x﹣16)(﹣10x+560)
=﹣10x2+720x﹣8960
=﹣10(x﹣36)2+4000,
∴x=36时,W最大=4000(x=36在16≤x≤48的范围内)
∴售价为36元/件时,日获利最大,最大利润为4000元;
(4)由(3)知 W=﹣10(x﹣36)2+4000
∴3000=﹣10(x﹣36)2+4000,
解得:x1=26,x2=46(x1,x2均在16≤x≤48范围内),
∵y=﹣10x+560,
∵﹣10<0,由一次函数性质可知,x越小,销量y越大,库存越小,
即售价为26元/件时,库存小,同时每天能获利3000元.
科目:初中数学 来源: 题型:
【题目】将一些扑克牌分成左、中、右相同的三份.
第一步:从左边取两张扑克牌,放在中间,右边不变;
第二步:从右边取一张扑克牌,放在中间,左边不变;
第三步:从中间取与左边相同张数的扑克牌,放在左边,右边不变.
则此时中间有 张扑克牌.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=(x﹣1)2+3向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为( )
A.y=(x﹣2)2 B.y=x2 C.y=x2+6 D.y=(x﹣2)2+6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店3月份的营业额为15万元,4月份的营业额比3月份的营业额减少了10%,商店经过加强管理,实施各种措施.使得5,6月份的营业额连续增长,6月份的营业额达到了20万元;设5,6月份的营业额的平均增长率为x,以题意可列方程为( )
A.15(1+x)2=20
B.20(1+x)2=15
C.15(1﹣10%)(1+x)2=20
D.20(1﹣10%)(1+x)2=15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人体中的红细胞个数约有25 000 000 000 000,用科学记数法表示这个数为( )
A.2.5×1013 B.25×1012 C.3×1013 D.0.25×1014
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com