精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,将矩形ABCD沿着直线BD折叠,使点C落在点C′,BC′交AD于点E,AD=8,AB=4.
(1)求证:△BED是等腰三角形;
(2)求△BED的面积.
分析:(1)要证△BED是等腰三角形,只需证明∠1=∠2即可,根据翻折的性质∠2=∠3,又∠1=∠3,继而得证;
(2)只需求出ED的长即可求出△BED的面积,设ED=x,则AE=8-x,BE=x,在Rt△ABE中,根据勾股定理即可求出ED的长.
解答:(1)证明:根据翻折的性质可得:∠2=∠3,
又AD∥BC,∴∠1=∠3,
∴∠1=∠2,△BED是等腰三角形,得证.

(2)解:设ED=x,则AE=8-x,BE=ED=x,
在Rt△ABE中,根据勾股定理有AB2+AE2=BE2
代入得:42+(8-x)2=x2,解得:x=5,
S△BED=
1
2
ED•AB=
1
2
×5×4
=10.
点评:本题考查的是图形翻折变换的性质,解答此类题目首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,将矩形ABCD沿两条较长边的中点的连线对折,如果矩形BEFA与矩形ABCD相似,那么AB:AD等于(  )
A、
2
:1
B、1:
2
C、
3
:1
D、1:
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.
(1)试比较EO、EC的大小,并说明理由;
(2)令m=
S四边形CFGH
S四边形CMNO
,请问m是否为定值?若是,请求出m的值;若不是,请说明理由;
(3)在(2)的条件下,若CO=1,CE=
1
3
,Q为AE上一点且QF=
2
3
,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式;
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标;若不存在,请说明精英家教网理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,那么△BED面积是
 
平方单位.

查看答案和解析>>

同步练习册答案