(本题满分10分)
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.
1.(1)求这条抛物线所对应的函数关系式;
2.(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
3.(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
1.(1)设抛物线的解析式为y =ax2+bx+c,则有:
解得:,所以抛物线的解析式为y =x2-2x-3
2.(2)令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0).
设直线BC的解析式为y =kx+b,
则,解得,所以直线解析式是y =x-3.
当x=1时,y=-2.所以M点的坐标为(1,-2).
3.(3)方法一:要使∠PBC=90°,则直线PC过点C,且与BC垂直,
又直线BC的解析式为y =x-3,
所以直线PC的解析式为y =-x-3,当x=1时,y=-4,
所以P点坐标为(1,-4).
方法二:设P点坐标为(1,y),则PC2=12+(-3-y)2,
BC2=32+32;PB2=22+y2
由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,则有PC2+BC2=PB2.
所以:[12+(-3-y)2]+[32+32]=22+y2;解得y =-4,
所以P点坐标为(1,-4)
【解析】略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届江苏省盐城市九年级下学期期中考试数学卷 题型:选择题
(本题满分10分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路. 现新修一条路AC到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:,).
查看答案和解析>>
科目:初中数学 来源:2012届江苏省海陵区九年级第一学期期末考试数学卷 题型:解答题
(本题满分10分)如图,BD是直径,过⊙O上一点A作⊙O切线交DB延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC ,
1.(1)求证:AB = AC
2.(2)若PA= 10 ,PB = 5 ,求⊙O半径.
查看答案和解析>>
科目:初中数学 来源:2012届江苏省九年级下学期3月考数学卷 题型:解答题
(本题满分10分)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.
(1)求点与点的坐标;
(2)当四边形为菱形时,求函数的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com