精英家教网 > 初中数学 > 题目详情

(本题满分10分)

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.

1.(1)求这条抛物线所对应的函数关系式;

2.(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;

3.(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

 

 

【答案】

 

1.(1)设抛物线的解析式为y =ax2+bx+c,则有:

解得:,所以抛物线的解析式为y =x2-2x-3

2.(2)令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0).

设直线BC的解析式为y =kx+b,

,解得,所以直线解析式是y =x-3.

当x=1时,y=-2.所以M点的坐标为(1,-2).

3.(3)方法一:要使∠PBC=90°,则直线PC过点C,且与BC垂直,

又直线BC的解析式为y =x-3,

所以直线PC的解析式为y =-x-3,当x=1时,y=-4,

所以P点坐标为(1,-4).

方法二:设P点坐标为(1,y),则PC2=12+(-3-y)2,

BC2=32+32;PB2=22+y2

由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,则有PC2+BC2=PB2.

所以:[12+(-3-y)2]+[32+32]=22+y2;解得y =-4,

所以P点坐标为(1,-4)

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分10分)

如图,已知OA⊥OB,OA=8,OB=6,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)求证:△OAB∽△EDA;                               
(2)当a为何值时,△OAB与△EDA全等?并求出此时点C到OE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(11·贵港)(本题满分10分)
随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.
(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;
(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012
年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的
汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011
年初起每年新增汽车数量最多不超过多少万辆.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省盐城市九年级下学期期中考试数学卷 题型:选择题

(本题满分10分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路lABAl的小路. 现新修一条路AC到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省海陵区九年级第一学期期末考试数学卷 题型:解答题

(本题满分10分)如图,BD是直径,过⊙O上一点A作⊙O切线交DB延长线于P,过B点作BC∥PA交⊙O于C,连接AB、AC ,

1.(1)求证:AB = AC

2.(2)若PA= 10 ,PB = 5 ,求⊙O半径.

 

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省九年级下学期3月考数学卷 题型:解答题

(本题满分10分)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.

(1)求点与点的坐标;

(2)当四边形为菱形时,求函数的关系式.

 

查看答案和解析>>

同步练习册答案