精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.

(1)求证:CB=CF;
(2)若点E到弦AD的距离为1,,求⊙O的半径.
(1)证明:如图,

∵AE2=EF•EB,∴
又∠AEF=∠AEB,∴△AEF∽△AEB。
∴∠1=∠EAB。
∵BC是⊙O的切线,∴∠3=∠EAB。
又∵∠1=∠2,
∴∠2=∠3。∴CB=CF。
(2)如图,连接OE交AC于点G,设⊙O的半径是r,
由(1)知,△AEF∽△AEB,则∠EAF=∠EBA,∴。∴OE⊥AD。
∵点E到弦AD的距离为1,∴EG=1。
,且∠C+∠GAO=90°,∴
,即
解得,,即⊙O的半径是
(1)如图,通过相似三角形(△AEF∽△AEB)的对应角相等推知,∠1=∠EAB;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论。
(2)如图,连接OE交AC于点G,设⊙O的半径是r,由(1)中的相似三角形的性质证得∠EAF=∠EBA,所以由“圆周角、弧、弦间的关系”推知点E是弧AD的中点,则OE⊥AD;然后通过解直角△ABC求得cos∠C
=sin∠GAO=,即可求得r的值。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧的弧长为    
(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为       
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB的度数为【   】
A.400 B.500 C.650  D.750

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.

(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是【   】
A.相交B.相离C.内切D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川资阳3分)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是【   】
A.B.C.D.

查看答案和解析>>

同步练习册答案