【题目】如图,在直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,OA、OB的长是关于x的一元二次方程x2﹣12x+32=0的两个实数根,且OB>OA,以OA为一边作如图所示的正方形AOCD,CD交AB于点P.
(1)求直线AB的解析式;
(2)在x轴上是否存在一点Q,使以P、C、Q为顶点的三角形与△ADP相似?若存在,求点Q坐标;否则,说明理由;
(3)设N是平面内一动点,在y轴上是否存在点M,使得以A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标;否则,请说明理由.
【答案】(1)y=x+4;(2)存在满足条件的点Q,其坐标为(﹣8,0)或(0,0)或(﹣3,0)或(﹣5,0);(3)存在满足条件的M点,其坐标为(0,4+4)或(0,4﹣4)或(0,0).
【解析】试题分析:(1)由方程可求得OA、OB的长,则可求得的坐标,利用待定系数法可求得直线的解析式;
(2)设Q(x,0),则CQ=|x+4|,分和两种情况,利用相似三角形的性质可分别得到关于的方程,则可求得的值,可求得点坐标;
(3)当为菱形的边时,则有可求得点坐标;当为对角线时,由图形可知点即为所求,可求得点坐标.
试题解析:(1)解方程可得x=4或x=8,
∵OA、OB的长是关于x的一元二次方程的两个实数根,且OB>OA,
∴OA=4,OB=8,
∴A(0,4),B(8,0),
设直线AB解析式为y=kx+b,
∴ 解得
∴直线AB解析式为
(2)∵四边形AOCD为正方形,
∴AD=CD=OC=OA=4,
∴C(4,0),
在中,令x=4,可得y=2,
∴PC=PD=2,
设Q(x,0),则CQ=|x+4|,
∵以P、C.Q为顶点的三角形与△ADP相似,
∴有△PCQ∽△PDA和△PCQ∽△ADP两种情况,
①当△PCQ∽△PDA时,则有,即,解得x=0或x=8,此时Q点坐标为(8,0)或(0,0);
②当△PCQ∽△ADP时,则有即,解得x=3或x=5,此时Q点坐标为(3,0)或(5,0);
综上可知存在满足条件的点Q,其坐标为(8,0)或(0,0)或(3,0)或(5,0);
(3)由题意可设M(0,y),
∵A(0,4),C(4,0),
∴
当AC为菱形的一边时,则有AC=AM,即|y4|=,解得y=4±,此时M点坐标为或
当AC为菱形的对角线时,则有MA=MC,由题意可知此时M点即为O点,此时M点坐标为(0,0);
综上可知存在满足条件的M点,其坐标为或或(0,0).
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.
(1)求抛物线解析式;
(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;
(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是_________小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y=x﹣3的图象l交于点E(m ,﹣5).
(1)m=__________;
(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;
(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=12,AB=10,则AE的长为( )
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.
(1)作出满足题意的点F,简要说明你的作图过程;
(2)依据你的作图,证明:DF=BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】位于南岸区黄桷垭的文峰塔,有着“平安宝塔”之称.某校数学社团对其高度 AB进行了测量.如图,他们从塔底A的点B出发,沿水平方向行走了13米,到达点C,然后沿斜坡CD继续前进到达点D处,已知DC=BC.在点D处用测角仪测得塔顶A的仰角为42°(点A,B,C,D,E在同一平面内).其中测角仪及其支架DE高度约为0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB约为( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
A. 22.5 米 B. 24.0 米 C. 28.0 米 D. 33.3 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【阅读理解】对于任意正实数a、b,因为≥0,所以 ≥0,所以≥2,只有当时,等号成立.
【获得结论】在≥2(a、b均为正实数)中,若为定值,则≥2,只有当时, 有最小值2.
根据上述内容,回答下列问题:若>0,只有当= 时, 有最小值 .
【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线(>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a= ,b= ,c= .
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当<t<时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com