【题目】以矩形的顶点为坐标原点建立平面直角坐标系,使点、分别在、轴的正半轴上,双曲线的图象经过的中点,且与交于点,过边上一点,把沿直线翻折,使点落在矩形内部的一点处,且,若点的坐标为(2,4),则的值为______.
【答案】
【解析】
延长E交OC于点G,设点D的坐标为(a,),根据矩形的性质和反比例函数的特征即可证出点E为AB的中点,然后根据点的坐标和折叠的性质即可各线段之间的关系,最后利用勾股定理列出方程即可求出CF和BC,最后根据正切的定义计算即可.
解:延长E交OC于点G
∵四边形OABC为矩形,双曲线的图象经过的中点,设点D的坐标为(a,)
∴点B的坐标为(2a,),即BC=2a
∴点E的坐标为(2a,),EG=BC=2a
∴点E为AB的中点
∵,若点的坐标为(2,4),
∴OG=AE=BE=4,OC=AB=2AE=8,
由折叠性质可知:CF=F,B=BC=2a
∴FG=OC-OG-CF=4-CF,E=EG-=2a-2
根据勾股定理可得:FG2+2=F2,E 2+BE 2= B2,
即(4-CF)2+22= CF 2,(2a-2) 2+4 2= (2a)2,
解得:CF=,a=
∴BC=2×=5
∴=
故答案为:.
科目:初中数学 来源: 题型:
【题目】王老师在数学课上带领同学们做数学游戏,规则如下:
游戏规则
甲任报一个有理数数传给乙;
乙把这个数减后报给丙;
丙再把所得的数的绝对值报给丁;
丁再把这个数的一半减,报出答案.
根据游戏规则,回答下面的问题:
(1)若甲报的数为,则乙报的数为_________,丁报出的答案是_________;
(2)若甲报的数为,请列出算式并计算丁报出的答案;
(3)若丁报出的答案是,则直接写出甲报的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果专卖店5月份销售芒果,采购价为10元,上旬售价是15元,每天可卖出450.市场调查反映:如调整单价,每涨价1元,每天要少卖出50;每降价1元,每天可多卖出150.调整价格时也要兼顾顾客利益。
(1)若专卖店5月中旬每天获得毛利2400元,试求出是如何确定售价的.
(2)请你帮老板算一算,5月下旬如何确定售价每天获得毛利最大,并求出最大毛利.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.
(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;
(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图像分别交x、y轴于点A、B,抛物线经过点A、B,点P为第四象限内抛物线上的一个动点.
(1)求此抛物线对应的函数表达式;
(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;
(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边,在坐标轴上,点的坐标为,点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点停止运动,点也停止运动.连接,过点作的垂线,与过点平行于轴的直线相交于点D,与轴交于点,连接,设点运动的时间为.
(1)求的度数及点的坐标(用表示).
(2)当为何值时,为等腰三角形?
(3)探索周长是否随时间的变化而变化.若变化,说明理由;若不变,试求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com