精英家教网 > 初中数学 > 题目详情

【题目】函数y= y=kx2+kk≠0)在同一直角坐标系中的图象可能是(   )

A. B. C. D.

【答案】B

【解析】

本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.

解:由解析式y=-kx2+k可得:抛物线对称轴x=0
A、由双曲线的两支分别位于二、四象限,可得k0,则-k0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;
B、由双曲线的两支分别位于一、三象限,可得k0,则-k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;
C、由双曲线的两支分别位于一、三象限,可得k0,则-k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;
D、由双曲线的两支分别位于一、三象限,可得k0,则-k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图所示.在△ABC中,∠B=90°,AB=5cmBC=7cm.点P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.如果PQ分别从AB同时出发,那么几秒后,△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,点OD分别为ABBC的中点,连接OD,作⊙OAC相切于点E,在AC边上取一点F,使DFDO,连接DF

1)判断直线DF与⊙O的位置关系,并说明理由;

2)当∠A30°CF时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形AOBC中,OB8OA4.分别以OBOA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.FBC边上一个动点(不与BC重合),过点F的反比例函数yk0)的图象与边AC交于点E

1)当点F运动到边BC的中点时,求点E的坐标;

2)连接EFAB,求证:EFAB

3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了阅读”、“打球”、“书法其他四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:

根据统计图所提供的信息,解答下列问题:

(1)本次抽样调查中的样本容量是

(2)补全条形统计图;

(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为打球的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了深化课程改革,某校积极开展校本课程建设,计划成立文学鉴赏”、“国际象棋”、“音乐舞蹈书法等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):

选择意向

文学鉴赏

国际象棋

音乐舞蹈

书法

其他

所占百分比

a

20%

b

10%

5%

根据统计图表的信息,解答下列问题:

(1)求本次抽样调查的学生总人数及ab的值;

(2)将条形统计图补充完整;

(3)若该校共有1300名学生,试估计全校选择音乐舞蹈社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EBC的中点,且∠AEC=∠DCE,则下列结论不正确的是(  )

A. BF=DFB. SAFD2SEFBC. 四边形AECD是等腰梯形D. AEB=∠ADC

查看答案和解析>>

同步练习册答案