精英家教网 > 初中数学 > 题目详情
(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

【答案】分析:(1)过B作BC⊥OA于C,根据三角形OAB的面积可求出BC=4,然后可设OC=x,根据射影定理可得出BC2=OC•AC,据此可求出x的值,即可得出B点坐标;
(2)已知了三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据抛物线和圆的对称性可知,P和三角形OAB的外心必在抛物线的对称轴上,因此本题只需判断P点的纵坐标的绝对值与OA的一半的大小关系,如果|yP|大于5,则顶点P在圆外,如果|yP|小于5,则在园内,如果等于5,则在圆上.
解答:解:(1)过B作BC⊥OA于C,
∵S△OAB=OA•BC=20,OA=10,
∴BC=4
在直角三角形ABO中,BC⊥OA,
设OC=x,根据射影定理有:
BC2=OC•AC,即16=x(10-x),解得x=2,x=8
因此B(2,4);

(2)设抛物线的解析式为y=ax(x-10),
已知抛物线过B(2,4),有:
a×2×(2-10)=4,a=-
∴所求的抛物线解析式为:y=-x2+x;

(3)由(2)可知:y=-(x-5)2+
因此P(5,
>5
∴顶点P在外接圆外.
点评:本题主要考查了二次函数、圆、直角三角形的相关知识.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省衢州市初中毕业生学业考试模拟试卷(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省舟山市中考数学试卷(解析版) 题型:解答题

(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2004•嘉兴)如图,已知⊙B的半径r=1,PA、PO是⊙B的切线,A、O是切点.过点A作弦AC∥PO,连接CO、AO(如图1).
(1)问△PAO与△OAC有什么关系?证明你的结论;
(2)把整个图形放在直角坐标系中(如图2),使OP与x轴重合,B点在y轴上.
设P(t,0),P点在x轴的正半轴上运动时,四边形PACO的形状随之变化,当这图形满足什么条件时,四边形PACO是菱形?说明理由.

查看答案和解析>>

同步练习册答案