精英家教网 > 初中数学 > 题目详情

是否存在整数,使得关于的一元二次方程:

的根都是整数?如果有,试求出的值.

方程的判别式,解得

方程的判别式,解得…2分则,满足条件的整数只可能为一1,0,1,将这些代入方程,只有当时两个方程的根都是整数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的
53
,若存在,写出点K的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使得以C、P、Q为顶点的三角形与△OAB相似?若存在,求出t的值;若不存在,请说明理由.
(4)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,抛物线y=ax2+bx+5交x轴于A、B,交y轴于C,抛物线的顶点D的横坐标为4,OA•OC=OB.
(1)求抛物线的解析式;
(2)如图②,若P为抛物线上一动点,PQ∥y轴交直线l:y=
34
x
+9于点Q,以PQ为对角线作矩形且使得矩形的一边在直线l上,问是否存在这样一点P使得矩形的面积最小?若存在,求其最小值;若不存在,请说明理由
(3)如图③,将直线向下平移m个单位(m>9),设平移后的直线交抛物线于M、N两点(点M在点N左边),M关于原点的对称点为M′,连接M′N,问M′N在x轴上的正投影是否为定值?若为定值,求其值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,抛物线y=ax2+bx+5交x轴于A、B,交y轴于C,抛物线的顶点D的横坐标为4,OA•OC=OB.
(1)求抛物线的解析式;
(2)如图②,若P为抛物线上一动点,PQ∥y轴交直线l:y=数学公式+9于点Q,以PQ为对角线作矩形且使得矩形的一边在直线l上,问是否存在这样一点P使得矩形的面积最小?若存在,求其最小值;若不存在,请说明理由
(3)如图③,将直线向下平移m个单位(m>9),设平移后的直线交抛物线于M、N两点(点M在点N左边),M关于原点的对称点为M′,连接M′N,问M′N在x轴上的正投影是否为定值?若为定值,求其值;若不是定值,请说明理由.

查看答案和解析>>

同步练习册答案