精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.
(1)
直线DE与⊙O的位置关系是相切,
证明:连接OD,
∵AO=BO,BD=DC,
∴ODAC,
∵DE⊥AC,
∴DE⊥OD,
∵OD为半径,
直线DE是⊙O的切线,
即直线DE与⊙O的位置关系是相切;

(2)∵ODAC,∠BAC=60°,
∴∠DOB=∠A=60°,
∵DE是⊙O切线,
∴∠ODF=90°,
∴∠F=30°,
∴FO=2OD=12,
由勾股定理得:DF=6
3

∴阴影部分的面积S=S△ODF-S扇形DOB=
1
2
×6×6
3
-
60π×62
360
=18
3
-6π.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知AB⊥MN,垂足为点B,P是射线BN上的一个动点,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,点C到MN的距离为线段CD的长.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)在点P的运动过程中,点C到MN的距离是否会发生变化?如果发生变化,请用x的代数式表示这段距离;如果不发生变化,请求出这段距离;
(3)如果圆C与直线MN相切,且与以BP为半径的圆P也相切,求BP:PD的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.
(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠ACB=90°,BD是⊙O的直径,弦DE与AC交于点E,且BD=BF.
(1)求证:AC是⊙O的切线;
(2)若BC=6,AD=4,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度为每秒2个单位,点Q沿AD向终点D运动,速度为每秒1个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t秒.
(1)动点P与Q哪一点先到达自己的终点?此时t为何值;
(2)当O<t<2时,写出△PQA的面积S与时间t的函数关系式;
(3)以PQ为直径的圆能否与CD相切?若有可能,求出t的值或t的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长线于点F,
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PB为⊙O的切线,B为切点,连PO交⊙O于点A,PA=2,PO=5,则PB的长为______.

查看答案和解析>>

同步练习册答案