精英家教网 > 初中数学 > 题目详情
9.如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边△ABC和等边△ECD,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,则有以下五个结论:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
其中正确的有(  )
A.①③⑤B.①③④⑤C.①②③⑤D.①②③④⑤

分析 ①根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出AD=BE.
②首先根据全等三角形的判定方法,判断出△ACP≌△BCQ,即可判断出CP=CQ;然后根据∠PCQ=60°,可得△PCQ为等边三角形,所以∠PQC=∠DCE=60°,据此判断出PQ∥AE即可.
③根据全等三角形的判定方法,判断出△ACP≌△BCQ,即可判断出AP=BQ.
④首先根据DC=DE,∠PCQ=∠CPQ=60°,可得∠DPC>60°,然后判断出DP≠DC,再根据DC=DE,即可判断出DP≠DE.
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,据此判断即可.

解答 解:∵△ABC和△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD≌△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴AD=BE,
∴结论①正确.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠ACB=∠DCE=60°,
∴∠BCD=180°-60°-60°=60°,
∴∠ACP=∠BCQ=60°,
在△ACP和△BCQ中,
$\left\{\begin{array}{l}{∠ACP=∠BCQ}\\{∠CAP=∠CBQ}\\{AC=BC}\end{array}\right.$,
∴△ACP≌△BCQ,
∴CP=CQ,
又∵∠PCQ=60°,
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,
∴结论②正确.
在△ACP和△BCQ中,
$\left\{\begin{array}{l}{∠ACP=∠BCQ}\\{∠CAP=∠CBQ}\\{AC=BC}\end{array}\right.$
∴△ACP≌△BCQ,
∴AP=BQ,
∴结论③正确.
∵DC=DE,∠PCQ=∠CPQ=60°,
∴∠DPC>60°,
∴DP≠DC,
又∵DC=DE,
∴DP≠DE,
∴结论④不正确.
∵∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,
∴结论⑤正确.
综上,可得正确的结论有4个:①②③⑤.
故选:C.

点评 (1)此题主要考查了全等三角形的判定和性质的应用,要熟练掌握,在判定三角形全等时,关键是选择恰当的判定条件.
(2)此题还考查了等边三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等边三角形的内角都相等,且为60度;②等边三角形每条边上的中线、高线和所对角的平分线互相重合.③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高或所对角的平分线所在的直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时$\frac{BN}{CN}$=$\frac{1}{3}$,则△AMD′的面积与△AMN的面积的比为(  )
A.1:3B.1:4C.1:6D.1:9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在边长为a的正方形ABCD中,点E是AD上一动点(不与A、D重合),过点E作射线交CD于点F,使∠BEF=∠EBC.
(1)∠BEF的取值范围是45°<∠BEF<90°;若AE+DF=a,则∠ABE的度数为22.5°.
(2)当AE=ED时,求$\frac{CF}{DF}$的值.
(3)设$\frac{ED}{AE}$=λ,$\frac{CF}{DF}$的值是否与λ存在某种数量关系?若存在,用含λ的代数式表示$\frac{CF}{DF}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算正确的是(  )
A.(-8)-8=0B.3+$\sqrt{3}$=3$\sqrt{3}$C.(-3b)2=9b2D.a6÷a2=a3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.4个数a,b,c,d排列成$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$,我们称之为二阶行列式.规定它的运算法则为:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc.若$|\begin{array}{l}{x+3}&{x-3}\\{x-3}&{x+3}\end{array}|$=12,则x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.从A处向东走20m,再向南走40m到达B处的位置,若以A处所在位置为坐标原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定坐标轴的一个单位长度代表1m,则B处的位置可以用坐标表示为(20,-40).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.计算$\sqrt{2}$$•\sqrt{6}$的结果是(  )
A.12B.2$\sqrt{3}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知点M(3,-2)向上平移2个长度单位后得到点M′,则点M′的坐标为(  )
A.(3,0)B.(-1,-2)C.(-1,2)D.(3,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.

(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
组别雾霾天气的主要成因百分比
A工业污染45%
B汽车尾气排放m
C炉烟气排放15%
D其他(滥砍滥伐等)n

查看答案和解析>>

同步练习册答案