精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是边长为1的菱形,∠ABC60°.动点P1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为(  )

A.B.C.D.

【答案】B

【解析】

利用弧长公式计算即可解决问题.

由题意:点P所运动的路程

++ + ++

1+3+5++19+2+4++2+20

×10+×10

+

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】全民阅读活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:

中学生阅读方法情况统计表

阅读方法

频数

A

圈点批注法

a

B

摘记法

20

C

反思法

b

D

撰写读后感法

16

E

其他方法

4

1)请你补全图表中的abc数据:a   b   c   

2)若该校共有中学生960名,估计该校使用反思法读书的学生有   人;

3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用撰写读后感法读书,你同意小明的观点吗?请说明你的理由.

4)该校决定从本次抽取的其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还.租赁费用(元)随时间(天)的变化图象为折线,如图所示.

1)当租赁时间不超过3天时,求每日租金.

2)当时,求(元)与(天)的函数关系式.

3)甲、乙两人租赁该款汽车各一辆,两人租赁的时间共为9天,甲租的天数少于3天,乙比甲多支付费用720元.请问乙租这款汽车多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)

1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在RtABC中,∠ACB=90°CDAB,垂足为D,则:(1AC=AB·AD(2)BC=AB·BD(3)CD = AD·BD;请你证明定理中的结论(1AC = AB·AD

(结论运用)

2)如图2,正方形ABCD的边长为3,点O是对角线ACBD的交点,点ECD上,过点CCFBE,垂足为F,连接OF

①求证:△BOF∽△BED

②若,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+5经过坐标轴上ABC三点,连接ACtanC5OA3OB

1)求抛物线的解析式;

2)点Q在第四象限的抛物线上且横坐标为t,连接BQy轴于点E,连接CQCB,△BCQ的面积为S,求St的函数解析式;

3)已知点D是抛物线的顶点,连接CQDH所在直线是抛物线的对称轴,连接QH,若∠BQC45°,HRx轴交抛物线于点RHQHR,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABAC分别是O的直径和弦,ODAC于点D.过点AO的切线与OD的延长线交于点PPCAB的延长线交于点E

1)求证:PCO的切线.

2)若∠ABC60°,AB2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线x轴交于点B,与y轴交于点C,二次函数的图象经过点B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.

(1)求二次函数的表达式;

(2)如图1,连接DC,DB,BCD的面积为S,S的最大值;

(3)如图2,过点DDMBC于点M,是否存在点D,使得CDM中的某个角恰好等于∠ABC2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究

1)如图①,在等腰直角三角形中,,作于点,点为射线上一点,以点为旋转中心将线段逆时针旋转90°得到线段,连接交射线于点,连接

        

填空:

①线段的数量关系为___________

②线段的位置关系为___________

推广:

2)如图②,在等腰三角形中,,作于点,点外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接请判断(1)中的结论是否成立,并说明理由.

应用:

3)如图③,在等边三角形中,.作于点,点为射线上一点,以点为旋转中心将线段逆时针旋转60°得到线段,连接交射线于点,连接.当以为顶点的三角形与全等时,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结ACCE,使AB=AC

1)求证:△BAD≌△AEC

2)若∠B=30°∠ADC=45°BD=10,求平行四边形ABDE的面积.

查看答案和解析>>

同步练习册答案