分析 (1)由题中条件可得∠AEM=∠MCN=135°,再由两角夹一边即可判定三角形全等;
(2)还是利用两角夹一边证明其全等,证明方法同(1).
解答 (1)证明:在边AB上截取AE=MC,连接ME,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
由三角形外角的性质可知,∠AMP=∠ABM+∠EAM,即∠AMN+∠CMN=∠ABM+∠EAM,
∵∠AMN=∠ABM=90°,
∴∠CMN=∠EAM,
在△AEM和△MCN中:
∵$\left\{\begin{array}{l}{∠AEM=∠MCN}\\{AE=CM}\\{∠EAM=∠CMN}\end{array}\right.$
∴△AEM≌△MCN,
∴AM=MN;
(2)结论:仍然成立.
证明:在边AB上截取AE=MC,连接ME,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
点评 本题主要考查了全等三角形的判定及性质问题,熟练掌握其性质并能够运用所学知识证明三角形的全等问题.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
单项式 | x | -$\frac{x}{2}$ | 8x2 | -$\frac{xyz}{3}$ | -$\frac{3}{5}$x2yz3 |
次数 | 1 | 1 | 2 | 3 | 6 |
系数 | 1 | -$\frac{1}{2}$ | 8 | -$\frac{1}{3}$ | -$\frac{3}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com