精英家教网 > 初中数学 > 题目详情

【题目】如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.

【答案】3

【解析】

由题意可知,在圆的旋转过程中,圆周上的四个数字与数轴上的数字的重合情况是旋转一周循环一次,由图可知,数轴上与圆周上2重合的数是4n-1(n为正整数),与圆周上1重合的数是4n,与圆周上0重合的数是4n+1,与圆周上3重合的数是4n+2,由此即可求得与数轴上2018重合的数字是几了.

∴2018=4n+2,

与数轴上2018重合的数字是3.

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥CD,EF∥DA∥CB,则有( )

A. S1=S4 B. S1+S4=S2+S3 C. S1S4=S2S3 D. 都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=60°,坡长AB=20 m,为加强水坝强度,降坝底从A处后水平延伸到F处,使新的背水坡角∠F=45°,求AF的长度(结果精确到1米,参考数据: 1.414, ≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

1x249

23x27x0

3(直接开平方法)

4(用配方法)

5 (因式分解法)

6

7)(x2)(x5=2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)x2+6x﹣1=0
(2)(2x+3)2﹣25=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).

(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,C=90°,AE是ABC的角平分线;ED平分AEB,交AB于点D;CAEB

(1)求B的度数.

(2)如果AC=3cm,求AB的长度.

(3)猜想:ED与AB的位置关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm,水的最大深度为2cm,求该输水管的半径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解,完成下列各题

定义:已知A、B、C 为数轴上任意三点,若点C A 的距离是它到点B 的距离的2 倍,则称点C [A,B]2 倍点.例如:如图1,点C [A,B]2 倍点,点D 不是[A,B]2 倍点,但点D [B,A]2 倍点,根据这个定义解决下面问题:

(1)在图1 中,点A    2倍点,点B   2 倍点;(选用A、B、C、D 表示,不能添加其他字母);

(2)如图2,M、N 为数轴上两点,点M 表示的数是﹣2,点N 表示的数是4,若点E[M,N]2倍点,则点E 表示的数是   

(3)若P、Q 为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q 出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t 秒,求当t 为何值时,点H 恰好是PQ两点的2倍点?(用含m 的代数式表示)

查看答案和解析>>

同步练习册答案