精英家教网 > 初中数学 > 题目详情
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。
;312.5;300

试题分析:1).                        3分
(2)面积
=,                5分
所以当=25米时,面积最大,最大面积为312.5平方米。  7分
(3)当面积米时,由=300,解得,  9分
,所以
即当时,面积不小于300平方米
点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线交x轴的正半轴于点A,交y轴于点B,且OA=OB.

(1)求该抛物线的解析式;
(2)若点M为AB的中点,∠PMQ在AB的同侧以 点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D. 设AD=m(m>0),BC=n,求n与m之间的函数关系式;
(3)在(2)的条件下,当∠PMQ的一边恰好经过该抛物线与x轴的另一个交点时,求∠PMQ的另一边所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线轴交于两点,与轴交于点,连结是线段上一动点,以为一边向右侧作正方形,连结.若

(1)求抛物线的解析式;
(2)求证:
(3)求的度数;
(4)当点沿轴正方向移动到点时,点也随着运动,则点所走过的路线长是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是           时,为直角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与轴交于B、C两点(点B在点C的左侧),一次函数的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),.

(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的倍,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求b,c的值;
(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.
(1)求顾客一次至少买多少件,才能以最低价购买?
(2)写出当出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;
(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则函数值时,自变量的取值范围是( ).
A.B.C.D.

查看答案和解析>>

同步练习册答案