精英家教网 > 初中数学 > 题目详情

抛物线(b,c均为常数)与x轴交于两点,与y轴交于点
(1)求该抛物线对应的函数表达式;
(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P的坐标.

(1);(2)

解析试题分析:(1)由抛物线,代入即可求得该抛物线对应的函数表达式.
(2)求抛物线的对称轴,根据点P到抛物线的对称轴的距离为3确定点P的横坐标,代入函数表达式即可求得纵坐标.
试题解析:(1) ∵抛物线与y轴交于点,∴c="3" .?
.
又∵抛物线与x轴交于点,∴b="-4" .?
.
(2)∵,∴抛物线的对称轴为
∵当点P到抛物线的对称轴的距离为3时,
∴当时,
∴点P的坐标为
考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线经过点(0,),(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在之间的部分为图象(包含两点).若直线与图象有公共点,结合函数图像,求点纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为 ,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2,  求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知二次函数经过、C三点,点是抛物线与直线的一个交点.
(1)求二次函数关系式和点C的坐标;
(2)对于动点,求的最大值;
(3)若动点M在直线上方的抛物线运动,过点M做x轴的垂线交x轴于点F,如果直线AP把线段MF分成1:2的两部分,求点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与轴交于两点,与轴交于点,已知点(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究的外接圆的圆心位置,并求出圆心坐标;
(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;
(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图象经过点(0,- 3),且顶点坐标为(1,- 4).求这个解析式。

查看答案和解析>>

同步练习册答案