【题目】一条公路旁依次有,,三个村庄,甲乙两人骑自行车分别从村、村同时出发前往村,甲乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:
①,两村相距; ②出发后两人相遇;
③甲每小时比乙多骑行; ④相遇后,乙又骑行了时两人相距.
其中正确的有_____________________.(填序号)
【答案】①②③④
【解析】
根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.
由图象可知A村、B村相离10km,故①正确,
当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,
当设甲的速度为akm/h,乙的速度为bkm/h,同向行驶,甲的速度快,
当1.25h时,甲、乙相距为0km,故在此时相遇,故1.25(a-b)=10
解得a-b=8,即甲的速度比乙快8km/h
∴甲每小时比乙多骑行,故③正确
当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6),
设一次函数的解析式为s=kt+b
代入得,解得
∴s=8t+10
当s=2时.得2=8t10,解得t=1.5h
由1.51.25=0.25h=15min
故相遇后,乙又骑行了15min两人相距2km,④正确.
故答案为:①②③④.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相较于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,则S△BPD=;其中正确的是( )
A.①②③④B.②③C.①②④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.
(1)求k的取值范围:
(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)(1)如图①,点E、F、G、H分别在平行四边形ABCD的边AB、BC、CD、DA上,连结EF、FG、GH、HE,将△AEH、△BFE、△CGF、△DHG分别沿EF、FG、GH、HE折叠,折叠后的图形恰好能拼成一个无重叠、无缝隙的矩形.若,,求的长.
(拓展)(2)参考图②,四边形ABCD是平行四边形,,当按图①的方式折叠后的图形能拼成一个无重叠、无缝隙的正方形时,则___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.
为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?
如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的顶点的坐标是,动点从点出发,沿线段向终点运动,同时动点从点出发,沿线段向终点运动.点、的运动速度均为每秒1个单位,过点作交于点,一点到达,另一点即停.设点的运动时间为秒.
(1)填空:用含的代数式表示下列各式
__________,__________.
(2)①当时,求点到直线的距离.
②当点到直线的距离等于时,直接写出的值.
(3)在动点、运动的过程中,点是矩形(包括边界)内一点,且以、、、为顶点的四边形是菱形,直接写出点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=-x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,顶点为D.
(1)写出A、B、D三点的坐标;
(2)若P(0,t)(t<-1)是y轴上一点,Q(-5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E恰好在该二次函数的图象上时,求t的值;
(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com