【题目】如图所示,观察由棱长为 的小立方体摆成的图形,寻找规律:如图 ① 中,共有 个小立方体,其中 个看得见, 个看不见;如图 ② 中,共有 个小立方体,其中 个看得见, 个看不见;如图 ③ 中,共有 个小立方体,其中 个看得见, 个看不见; ,则第 ⑥个图中,看得见的小立方体有________________个.
【答案】91
【解析】解:n=1时,共有小立方体的个数为1,看不见的小立方体的个数为0个,看得见的小立方体的个数为1﹣0=1;
n=2时,共有小立方体的个数为2×2×2=8,看不见的小立方体的个数为(2﹣1)×(2﹣1)×(2﹣1)=1个,看得见的小立方体的个数为8﹣1=7;
n=3时,共有小立方体的个数为3×3×3=27,看不见的小立方体的个数为(3﹣1)×(3﹣1)×(3﹣1)=8个,看得见的小立方体的个数为27﹣8=19;
…
n=6时,共有小立方体的个数为6×6×6=216,看不见的小立方体的个数为(6﹣1)×(6﹣1)×(6﹣1)=125个,看得见的小立方体的个数为216﹣125=91.
故答案为:91.
科目:初中数学 来源: 题型:
【题目】已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,
(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;
(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于 G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为 8.其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=3,CD=5,则线段AC的长度为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.
(1)如图①,求证:DF⊥CE;
(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形
(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=,求EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某瓜果基地市场部为指导该基地某种蔬菜的生产销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图所示.注:两图中的每个实心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,图甲的图象是线段,图乙的图象是抛物线.
请你根据图象提供的信息说明:
(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由;
(3)已知市场部销售该种蔬菜,4、5两个月的总收益为48万元,且5月份的销量比4月份的销量多2万公斤,求4、5两个月销量各多少万公斤?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)求证:直线DE是⊙O的切线;
(2)若AC=6,BC=8,OA=2,求线段AD和DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com