精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求
AD
的度数.
分析:因为弧与垂径定理有关;与圆心角、圆周角有关;与弦、弦心距有关;弧与弧之间还存在着和、差、倍、半的关系,因此这道题有很多解法,仅选几种供参考.
解答:精英家教网解:解法一:(用垂径定理求)
如图,过点C作CE⊥AB于点E,交
AD
于点F,
DF
=
AF

又∵∠ACB=90°,∠B=25°,
∴∠FCA=25°,
AF
的度数为25°,
AD
的度数为50°;
精英家教网
解法二:(用圆周角求)如图,延长AC交⊙C于点E,连接ED,
∵AE是直径,
∴∠ADE=90°,
∵∠ACB=90°,∠B=25°,
∴∠E=∠B=25°,
AD
的度数为50°;精英家教网

解法三:(用圆心角求)如图,连接CD,
∵∠ACB=90°,∠B=25°,
∴∠A=65°,
∵CA=CD,
∴∠ADC=∠A=65°,
∴∠ACD=50°,
AD
的度数为50°.
点评:本题可以利用:1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧.2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案